© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10137Visit 10137's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10137's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss Code: | {-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 -14 2 -16 -18 -6 -20 -12 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 - 6t-1 + 11 - 6t + t2 |
Conway Polynomial: | 1 - 2z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {25, 0} |
Jones Polynomial: | q-6 - 2q-5 + 3q-4 - 4q-3 + 4q-2 - 4q-1 + 4 - 2q + q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {10155, K11n37, ...} |
A2 (sl(3)) Invariant: | q-20 + q-18 - q-16 - q-12 - q-10 + q-8 + q-4 + q2 - q4 + q6 + q8 |
HOMFLY-PT Polynomial: | a-2 - 1 - 2z2 + 2a2 + 2a2z2 + a2z4 - 2a4 - 2a4z2 + a6 |
Kauffman Polynomial: | - a-2 + a-2z2 - a-1z + 2a-1z3 - 1 + 4z2 - 2z4 + z6 - 3az + 9az3 - 7az5 + 2az7 - 2a2 + 7a2z2 - 5a2z4 - a2z6 + a2z8 - 5a3z + 15a3z3 - 15a3z5 + 4a3z7 - 2a4 + 8a4z2 - 7a4z4 - a4z6 + a4z8 - 3a5z + 8a5z3 - 8a5z5 + 2a5z7 - a6 + 4a6z2 - 4a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10137. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 2q-17 - q-16 + 6q-15 - 4q-14 - 6q-13 + 11q-12 - 2q-11 - 11q-10 + 11q-9 + 3q-8 - 13q-7 + 7q-6 + 8q-5 - 13q-4 + 2q-3 + 10q-2 - 9q-1 - 1 + 7q - 3q2 - 2q3 + 2q4 |
3 | q-36 - 2q-35 - q-34 + 2q-33 + 5q-32 - 3q-31 - 9q-30 + q-29 + 13q-28 + 3q-27 - 14q-26 - 9q-25 + 13q-24 + 12q-23 - 6q-22 - 14q-21 - 2q-20 + 12q-19 + 9q-18 - 5q-17 - 18q-16 - q-15 + 23q-14 + 10q-13 - 28q-12 - 17q-11 + 31q-10 + 25q-9 - 34q-8 - 32q-7 + 36q-6 + 36q-5 - 33q-4 - 42q-3 + 31q-2 + 40q-1 - 19 - 41q + 15q2 + 30q3 - 4q4 - 23q5 + 13q7 + 3q8 - 7q9 - q10 + q11 + 2q12 - q13 |
4 | q-60 - 2q-59 - q-58 + 2q-57 + q-56 + 6q-55 - 7q-54 - 7q-53 + q-51 + 23q-50 - 5q-49 - 13q-48 - 11q-47 - 14q-46 + 35q-45 + 6q-44 + 2q-43 - 7q-42 - 38q-41 + 18q-40 - 5q-39 + 21q-38 + 32q-37 - 28q-36 - 4q-35 - 53q-34 + 74q-32 + 24q-31 + 11q-30 - 99q-29 - 65q-28 + 77q-27 + 82q-26 + 62q-25 - 111q-24 - 136q-23 + 45q-22 + 118q-21 + 119q-20 - 96q-19 - 190q-18 + 5q-17 + 140q-16 + 162q-15 - 79q-14 - 228q-13 - 27q-12 + 154q-11 + 193q-10 - 59q-9 - 253q-8 - 58q-7 + 150q-6 + 210q-5 - 22q-4 - 241q-3 - 89q-2 + 105q-1 + 192 + 29q - 174q2 - 94q3 + 37q4 + 124q5 + 53q6 - 81q7 - 58q8 - 7q9 + 48q10 + 36q11 - 22q12 - 17q13 - 10q14 + 9q15 + 11q16 - 4q17 - q18 - 3q19 + q20 + 2q21 - q22 |
5 | q-90 - 2q-89 - q-88 + 2q-87 + q-86 + 2q-85 + 2q-84 - 5q-83 - 9q-82 + 5q-80 + 10q-79 + 12q-78 - q-77 - 18q-76 - 21q-75 - 5q-74 + 12q-73 + 26q-72 + 23q-71 - q-70 - 25q-69 - 28q-68 - 16q-67 + q-66 + 22q-65 + 29q-64 + 27q-63 + 10q-62 - 20q-61 - 49q-60 - 59q-59 - 24q-58 + 50q-57 + 108q-56 + 89q-55 - 8q-54 - 129q-53 - 171q-52 - 70q-51 + 113q-50 + 234q-49 + 170q-48 - 47q-47 - 259q-46 - 279q-45 - 54q-44 + 243q-43 + 361q-42 + 176q-41 - 177q-40 - 415q-39 - 302q-38 + 88q-37 + 428q-36 + 412q-35 + 23q-34 - 415q-33 - 503q-32 - 131q-31 + 385q-30 + 567q-29 + 233q-28 - 344q-27 - 622q-26 - 316q-25 + 308q-24 + 660q-23 + 386q-22 - 276q-21 - 699q-20 - 445q-19 + 259q-18 + 729q-17 + 496q-16 - 234q-15 - 761q-14 - 550q-13 + 212q-12 + 777q-11 + 595q-10 - 158q-9 - 769q-8 - 652q-7 + 94q-6 + 733q-5 + 669q-4 + 3q-3 - 640q-2 - 679q-1 - 95 + 524q + 619q2 + 176q3 - 365q4 - 534q5 - 218q6 + 220q7 + 402q8 + 223q9 - 100q10 - 269q11 - 184q12 + 20q13 + 150q14 + 133q15 + 18q16 - 75q17 - 73q18 - 23q19 + 23q20 + 36q21 + 20q22 - 10q23 - 13q24 - 6q25 - q26 + 4q27 + 4q28 - q29 - q30 |
6 | q-126 - 2q-125 - q-124 + 2q-123 + q-122 + 2q-121 - 2q-120 + 4q-119 - 7q-118 - 9q-117 + 3q-116 + 4q-115 + 11q-114 + 2q-113 + 17q-112 - 13q-111 - 25q-110 - 13q-109 - 8q-108 + 14q-107 + 8q-106 + 57q-105 + 6q-104 - 18q-103 - 25q-102 - 38q-101 - 19q-100 - 34q-99 + 63q-98 + 26q-97 + 33q-96 + 30q-95 + 8q-94 - 11q-93 - 95q-92 - 23q-91 - 80q-90 - 16q-89 + 54q-88 + 132q-87 + 170q-86 + 32q-85 - 4q-84 - 217q-83 - 254q-82 - 192q-81 + 28q-80 + 305q-79 + 337q-78 + 342q-77 - 2q-76 - 320q-75 - 556q-74 - 456q-73 - 17q-72 + 334q-71 + 709q-70 + 598q-69 + 169q-68 - 478q-67 - 867q-66 - 684q-65 - 286q-64 + 519q-63 + 1025q-62 + 966q-61 + 238q-60 - 661q-59 - 1093q-58 - 1165q-57 - 300q-56 + 810q-55 + 1470q-54 + 1167q-53 + 131q-52 - 885q-51 - 1748q-50 - 1293q-49 + 73q-48 + 1422q-47 + 1826q-46 + 1065q-45 - 244q-44 - 1864q-43 - 2050q-42 - 769q-41 + 1029q-40 + 2109q-39 + 1799q-38 + 450q-37 - 1720q-36 - 2495q-35 - 1423q-34 + 615q-33 + 2192q-32 + 2268q-31 + 955q-30 - 1574q-29 - 2759q-28 - 1835q-27 + 360q-26 + 2265q-25 + 2574q-24 + 1251q-23 - 1537q-22 - 2984q-21 - 2118q-20 + 223q-19 + 2379q-18 + 2850q-17 + 1503q-16 - 1493q-15 - 3187q-14 - 2441q-13 - 28q-12 + 2364q-11 + 3101q-10 + 1899q-9 - 1158q-8 - 3140q-7 - 2772q-6 - 580q-5 + 1903q-4 + 3042q-3 + 2325q-2 - 396q-1 - 2508 - 2730q - 1207q2 + 940q3 + 2334q4 + 2310q5 + 433q6 - 1358q7 - 2008q8 - 1366q9 - 19q10 + 1181q11 + 1625q12 + 746q13 - 318q14 - 952q15 - 916q16 - 401q17 + 270q18 + 730q19 + 495q20 + 104q21 - 222q22 - 341q23 - 274q24 - 51q25 + 187q26 + 161q27 + 88q28 + 2q29 - 54q30 - 84q31 - 45q32 + 28q33 + 21q34 + 19q35 + 10q36 + 2q37 - 14q38 - 11q39 + 6q40 + q42 + q43 + 2q44 - q45 - 2q46 + q47 |
7 | q-168 - 2q-167 - q-166 + 2q-165 + q-164 + 2q-163 - 2q-162 + 2q-160 - 7q-159 - 6q-158 + 2q-157 + 4q-156 + 13q-155 + 4q-154 + 8q-152 - 17q-151 - 21q-150 - 16q-149 - 10q-148 + 24q-147 + 24q-146 + 20q-145 + 37q-144 - 2q-143 - 22q-142 - 37q-141 - 69q-140 - 13q-139 + 6q-138 + 14q-137 + 65q-136 + 45q-135 + 49q-134 + 34q-133 - 56q-132 - 37q-131 - 50q-130 - 93q-129 - 40q-128 - 53q-127 + 28q-126 + 135q-125 + 109q-124 + 166q-123 + 132q-122 - 29q-121 - 126q-120 - 318q-119 - 350q-118 - 172q-117 - 32q-116 + 296q-115 + 530q-114 + 508q-113 + 390q-112 - 65q-111 - 535q-110 - 750q-109 - 835q-108 - 441q-107 + 196q-106 + 731q-105 + 1200q-104 + 1075q-103 + 472q-102 - 304q-101 - 1215q-100 - 1587q-99 - 1304q-98 - 559q-97 + 695q-96 + 1709q-95 + 2053q-94 + 1662q-93 + 310q-92 - 1223q-91 - 2345q-90 - 2692q-89 - 1703q-88 + 110q-87 + 2023q-86 + 3336q-85 + 3101q-84 + 1440q-83 - 979q-82 - 3323q-81 - 4198q-80 - 3184q-79 - 626q-78 + 2606q-77 + 4746q-76 + 4757q-75 + 2520q-74 - 1234q-73 - 4609q-72 - 5923q-71 - 4471q-70 - 556q-69 + 3871q-68 + 6557q-67 + 6174q-66 + 2511q-65 - 2632q-64 - 6644q-63 - 7524q-62 - 4450q-61 + 1147q-60 + 6312q-59 + 8457q-58 + 6158q-57 + 418q-56 - 5653q-55 - 9036q-54 - 7614q-53 - 1899q-52 + 4896q-51 + 9326q-50 + 8744q-49 + 3213q-48 - 4111q-47 - 9446q-46 - 9642q-45 - 4273q-44 + 3436q-43 + 9466q-42 + 10301q-41 + 5114q-40 - 2896q-39 - 9500q-38 - 10806q-37 - 5713q-36 + 2537q-35 + 9546q-34 + 11209q-33 + 6162q-32 - 2335q-31 - 9683q-30 - 11579q-29 - 6488q-28 + 2241q-27 + 9874q-26 + 11968q-25 + 6826q-24 - 2157q-23 - 10106q-22 - 12424q-21 - 7261q-20 + 1973q-19 + 10277q-18 + 12914q-17 + 7866q-16 - 1525q-15 - 10222q-14 - 13368q-13 - 8687q-12 + 719q-11 + 9820q-10 + 13611q-9 + 9547q-8 + 461q-7 - 8824q-6 - 13394q-5 - 10356q-4 - 1972q-3 + 7327q-2 + 12593q-1 + 10717 + 3459q - 5274q2 - 11014q3 - 10520q4 - 4769q5 + 3064q6 + 8929q7 + 9541q8 + 5444q9 - 970q10 - 6433q11 - 7943q12 - 5495q13 - 635q14 + 4054q15 + 5982q16 + 4835q17 + 1569q18 - 2063q19 - 3981q20 - 3765q21 - 1856q22 + 690q23 + 2298q24 + 2583q25 + 1636q26 + 54q27 - 1104q28 - 1526q29 - 1177q30 - 325q31 + 386q32 + 766q33 + 736q34 + 314q35 - 77q36 - 327q37 - 361q38 - 196q39 - 46q40 + 96q41 + 171q42 + 113q43 + 32q44 - 31q45 - 57q46 - 32q47 - 26q48 - 7q49 + 24q50 + 18q51 + 9q52 - 4q53 - 7q54 + q55 - 2q56 - 4q57 + 2q58 + 2q59 + 2q60 - q61 - 2q62 + q63 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 137]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], X[20, 18, 1, 17], > X[18, 13, 19, 14], X[12, 19, 13, 20]] |
In[3]:= | GaussCode[Knot[10, 137]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -10, 9, -6, 7, -5, 8, -9, 10, > -8] |
In[4]:= | DTCode[Knot[10, 137]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, -16, -18, -6, -20, -12] |
In[5]:= | br = BR[Knot[10, 137]] |
Out[5]= | BR[5, {-1, 2, -1, 2, -3, -2, -2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 137]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 137]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 137]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 137]][t] |
Out[10]= | -2 6 2 11 + t - - - 6 t + t t |
In[11]:= | Conway[Knot[10, 137]][z] |
Out[11]= | 2 4 1 - 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 137]} |
In[13]:= | {KnotDet[Knot[10, 137]], KnotSignature[Knot[10, 137]]} |
Out[13]= | {25, 0} |
In[14]:= | Jones[Knot[10, 137]][q] |
Out[14]= | -6 2 3 4 4 4 2 4 + q - -- + -- - -- + -- - - - 2 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 137], Knot[10, 155], Knot[11, NonAlternating, 37]} |
In[16]:= | A2Invariant[Knot[10, 137]][q] |
Out[16]= | -20 -18 -16 -12 -10 -8 -4 2 4 6 8 q + q - q - q - q + q + q + q - q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 137]][a, z] |
Out[17]= | -2 2 4 6 2 2 2 4 2 2 4 -1 + a + 2 a - 2 a + a - 2 z + 2 a z - 2 a z + a z |
In[18]:= | Kauffman[Knot[10, 137]][a, z] |
Out[18]= | 2 -2 2 4 6 z 3 5 2 z -1 - a - 2 a - 2 a - a - - - 3 a z - 5 a z - 3 a z + 4 z + -- + a 2 a 3 2 2 4 2 6 2 2 z 3 3 3 5 3 4 > 7 a z + 8 a z + 4 a z + ---- + 9 a z + 15 a z + 8 a z - 2 z - a 2 4 4 4 6 4 5 3 5 5 5 6 2 6 > 5 a z - 7 a z - 4 a z - 7 a z - 15 a z - 8 a z + z - a z - 4 6 6 6 7 3 7 5 7 2 8 4 8 > a z + a z + 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 137]], Vassiliev[3][Knot[10, 137]]} |
Out[19]= | {-2, 2} |
In[20]:= | Kh[Knot[10, 137]][q, t] |
Out[20]= | 2 1 1 1 2 1 2 2 2 - + 3 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 2 2 2 3 5 2 > ----- + ---- + --- + q t + q t + q t 3 2 3 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 137], 2][q] |
Out[21]= | -18 2 -16 6 4 6 11 2 11 11 3 13 -1 + q - --- - q + --- - --- - --- + --- - --- - --- + -- + -- - -- + 17 15 14 13 12 11 10 9 8 7 q q q q q q q q q q 7 8 13 2 10 9 2 3 4 > -- + -- - -- + -- + -- - - + 7 q - 3 q - 2 q + 2 q 6 5 4 3 2 q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10137 |
|