© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10136Visit 10136's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10136's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,12,19,11 X20,15,1,16 X16,19,17,20 X12,18,13,17 X6,14,7,13 |
Gauss Code: | {-1, 4, -3, 1, -2, -10, 5, 3, -4, 2, 6, -9, 10, -5, 7, -8, 9, -6, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 -14 2 -18 -6 -20 -12 -16 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-2 + 4t-1 - 5 + 4t - t2 |
Conway Polynomial: | 1 - z4 |
Other knots with the same Alexander/Conway Polynomial: | {821, ...} |
Determinant and Signature: | {15, 2} |
Jones Polynomial: | q-3 - 2q-2 + 2q-1 - 2 + 3q - 2q2 + 2q3 - q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n92, ...} |
A2 (sl(3)) Invariant: | q-10 - q-2 + q4 + 2q6 + q8 + q10 - q12 - q14 |
HOMFLY-PT Polynomial: | - a-4 + 3a-2 + 2a-2z2 - 2 - 3z2 - z4 + a2 + a2z2 |
Kauffman Polynomial: | - a-4 + a-4z2 - 2a-3z + 7a-3z3 - 5a-3z5 + a-3z7 - 3a-2 + 4a-2z2 + 2a-2z4 - 4a-2z6 + a-2z8 - 4a-1z + 16a-1z3 - 14a-1z5 + 3a-1z7 - 2 + 6z2 - 2z4 - 3z6 + z8 - 2az + 9az3 - 9az5 + 2az7 - a2 + 3a2z2 - 4a2z4 + a2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10136. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-10 - 2q-9 - q-8 + 5q-7 - 3q-6 - 3q-5 + 6q-4 - 2q-3 - 3q-2 + 3q-1 - q + q3 + q4 - 3q5 + 2q6 + 3q7 - 4q8 + 3q10 - 2q11 - q12 + q13 |
3 | q-21 - 2q-20 - q-19 + 2q-18 + 4q-17 - 2q-16 - 7q-15 + 2q-14 + 7q-13 - 7q-11 + 5q-9 - 2q-8 - 2q-7 + 5q-6 + q-5 - 10q-4 + 14q-2 + 2q-1 - 19 - 2q + 21q2 + 6q3 - 26q4 - 5q5 + 26q6 + 8q7 - 30q8 - 6q9 + 29q10 + 8q11 - 29q12 - 8q13 + 25q14 + 11q15 - 21q16 - 10q17 + 13q18 + 8q19 - 6q20 - 7q21 + 3q22 + 3q23 - q25 |
4 | q-36 - 2q-35 - q-34 + 2q-33 + q-32 + 5q-31 - 6q-30 - 5q-29 + q-27 + 15q-26 - 6q-25 - 7q-24 - 3q-23 - 3q-22 + 16q-21 - 7q-20 - 4q-19 + 4q-18 + 11q-16 - 17q-15 - 14q-14 + 13q-13 + 17q-12 + 18q-11 - 23q-10 - 37q-9 + 6q-8 + 27q-7 + 36q-6 - 9q-5 - 54q-4 - 13q-3 + 20q-2 + 50q-1 + 17 - 58q - 29q2 + 4q3 + 53q4 + 41q5 - 55q6 - 39q7 - 9q8 + 52q9 + 57q10 - 54q11 - 45q12 - 16q13 + 51q14 + 67q15 - 51q16 - 48q17 - 22q18 + 45q19 + 71q20 - 36q21 - 42q22 - 33q23 + 26q24 + 62q25 - 13q26 - 22q27 - 31q28 + 2q29 + 33q30 + 2q31 + q32 - 15q33 - 7q34 + 8q35 + q36 + 5q37 - 2q38 - 2q39 - q41 + q42 |
5 | q-55 - 2q-54 - q-53 + 2q-52 + q-51 + 2q-50 + q-49 - 4q-48 - 7q-47 + 4q-45 + 8q-44 + 6q-43 - 2q-42 - 10q-41 - 12q-40 + 2q-39 + 10q-38 + 8q-37 + 2q-36 - 6q-35 - 10q-34 + 4q-33 + 11q-32 - 10q-30 - 16q-29 - 5q-28 + 20q-27 + 32q-26 + 13q-25 - 23q-24 - 45q-23 - 31q-22 + 14q-21 + 51q-20 + 51q-19 + 4q-18 - 46q-17 - 58q-16 - 30q-15 + 24q-14 + 61q-13 + 48q-12 + 3q-11 - 40q-10 - 61q-9 - 37q-8 + 19q-7 + 54q-6 + 60q-5 + 22q-4 - 44q-3 - 80q-2 - 52q-1 + 21 + 87q + 86q2 + 4q3 - 92q4 - 110q5 - 28q6 + 92q7 + 131q8 + 49q9 - 89q10 - 149q11 - 64q12 + 90q13 + 159q14 + 75q15 - 90q16 - 171q17 - 81q18 + 94q19 + 176q20 + 86q21 - 94q22 - 184q23 - 93q24 + 95q25 + 188q26 + 103q27 - 87q28 - 191q29 - 113q30 + 69q31 + 184q32 + 126q33 - 43q34 - 165q35 - 130q36 + 12q37 + 128q38 + 124q39 + 19q40 - 86q41 - 106q42 - 37q43 + 45q44 + 73q45 + 45q46 - 12q47 - 44q48 - 37q49 - 4q50 + 19q51 + 22q52 + 10q53 - 4q54 - 11q55 - 7q56 + 2q58 + 3q59 + q60 - q62 |
6 | q-78 - 2q-77 - q-76 + 2q-75 + q-74 + 2q-73 - 2q-72 + 3q-71 - 6q-70 - 7q-69 + 3q-68 + 3q-67 + 8q-66 + 2q-65 + 11q-64 - 12q-63 - 15q-62 - 5q-61 - 2q-60 + 9q-59 + 5q-58 + 28q-57 - 11q-56 - 14q-55 - 6q-54 - 6q-53 + 7q-52 + 24q-50 - 22q-49 - 18q-48 - q-47 + 7q-46 + 30q-45 + 22q-44 + 25q-43 - 45q-42 - 53q-41 - 34q-40 - 16q-39 + 50q-38 + 69q-37 + 73q-36 - 10q-35 - 51q-34 - 65q-33 - 90q-32 - 2q-31 + 42q-30 + 86q-29 + 52q-28 + 33q-27 + 8q-26 - 92q-25 - 47q-24 - 63q-23 - 21q-22 + 4q-21 + 77q-20 + 132q-19 + 35q-18 + 48q-17 - 93q-16 - 150q-15 - 166q-14 - 33q-13 + 142q-12 + 166q-11 + 253q-10 + 31q-9 - 155q-8 - 315q-7 - 233q-6 - 4q-5 + 177q-4 + 427q-3 + 231q-2 - 28q-1 - 352 - 398q - 210q2 + 81q3 + 503q4 + 402q5 + 141q6 - 307q7 - 487q8 - 384q9 - 37q10 + 516q11 + 511q12 + 273q13 - 251q14 - 527q15 - 497q16 - 119q17 + 516q18 + 571q19 + 347q20 - 221q21 - 548q22 - 557q23 - 151q24 + 523q25 + 599q26 + 378q27 - 214q28 - 566q29 - 588q30 - 159q31 + 528q32 + 620q33 + 403q34 - 196q35 - 574q36 - 625q37 - 193q38 + 489q39 + 633q40 + 461q41 - 113q42 - 522q43 - 649q44 - 284q45 + 341q46 + 562q47 + 506q48 + 53q49 - 339q50 - 560q51 - 358q52 + 98q53 + 346q54 + 422q55 + 187q56 - 83q57 - 322q58 - 290q59 - 80q60 + 90q61 + 213q62 + 167q63 + 64q64 - 88q65 - 123q66 - 86q67 - 30q68 + 41q69 + 61q70 + 54q71 + 4q72 - 14q73 - 25q74 - 22q75 - 6q76 + 5q77 + 10q78 + 4q79 + 5q80 - q81 - 2q82 - 2q83 - q86 + q87 |
7 | q-105 - 2q-104 - q-103 + 2q-102 + q-101 + 2q-100 - 2q-99 + q-97 - 6q-96 - 4q-95 + 2q-94 + 3q-93 + 10q-92 + 3q-91 + 4q-89 - 14q-88 - 12q-87 - 8q-86 - 4q-85 + 16q-84 + 15q-83 + 10q-82 + 13q-81 - 12q-80 - 13q-79 - 12q-78 - 24q-77 + 10q-76 + 17q-75 + 11q-74 + 12q-73 - 16q-72 - 12q-71 - q-70 - 14q-69 + 23q-68 + 36q-67 + 18q-66 + 5q-65 - 50q-64 - 59q-63 - 35q-62 - 23q-61 + 38q-60 + 86q-59 + 82q-58 + 66q-57 - 18q-56 - 88q-55 - 99q-54 - 104q-53 - 40q-52 + 37q-51 + 85q-50 + 123q-49 + 91q-48 + 20q-47 - 18q-46 - 71q-45 - 92q-44 - 75q-43 - 73q-42 - 26q-41 + 21q-40 + 60q-39 + 124q-38 + 150q-37 + 117q-36 + 46q-35 - 100q-34 - 228q-33 - 265q-32 - 223q-31 - 35q-30 + 200q-29 + 370q-28 + 417q-27 + 255q-26 - 59q-25 - 359q-24 - 556q-23 - 508q-22 - 184q-21 + 220q-20 + 591q-19 + 709q-18 + 478q-17 + 34q-16 - 492q-15 - 825q-14 - 745q-13 - 345q-12 + 263q-11 + 815q-10 + 952q-9 + 672q-8 + 30q-7 - 692q-6 - 1049q-5 - 962q-4 - 368q-3 + 489q-2 + 1068q-1 + 1174 + 689q - 232q2 - 1001q3 - 1338q4 - 978q5 - 11q6 + 897q7 + 1418q8 + 1210q9 + 265q10 - 772q11 - 1488q12 - 1400q13 - 447q14 + 666q15 + 1490q16 + 1538q17 + 630q18 - 564q19 - 1534q20 - 1652q21 - 719q22 + 504q23 + 1518q24 + 1720q25 + 830q26 - 452q27 - 1560q28 - 1783q29 - 852q30 + 440q31 + 1544q32 + 1811q33 + 907q34 - 422q35 - 1583q36 - 1850q37 - 907q38 + 430q39 + 1580q40 + 1875q41 + 951q42 - 415q43 - 1614q44 - 1922q45 - 988q46 + 387q47 + 1607q48 + 1972q49 + 1087q50 - 312q51 - 1585q52 - 2016q53 - 1195q54 + 169q55 + 1470q56 + 2021q57 + 1340q58 + 46q59 - 1286q60 - 1937q61 - 1434q62 - 298q63 + 965q64 + 1729q65 + 1476q66 + 552q67 - 601q68 - 1414q69 - 1362q70 - 728q71 + 211q72 + 994q73 + 1145q74 + 791q75 + 103q76 - 577q77 - 840q78 - 708q79 - 284q80 + 225q81 + 497q82 + 539q83 + 346q84 - 235q86 - 336q87 - 272q88 - 99q89 + 46q90 + 154q91 + 184q92 + 109q93 + 22q94 - 48q95 - 82q96 - 64q97 - 45q98 - 5q99 + 29q100 + 32q101 + 23q102 + 12q103 - 2q104 - 6q105 - 10q106 - 9q107 - q108 + 2q110 + 2q111 + q112 + q113 - q115 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 136]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[14, 8, 15, 7], X[18, 12, 19, 11], X[20, 15, 1, 16], X[16, 19, 17, 20], > X[12, 18, 13, 17], X[6, 14, 7, 13]] |
In[3]:= | GaussCode[Knot[10, 136]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, -10, 5, 3, -4, 2, 6, -9, 10, -5, 7, -8, 9, -6, 8, > -7] |
In[4]:= | DTCode[Knot[10, 136]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, -18, -6, -20, -12, -16] |
In[5]:= | br = BR[Knot[10, 136]] |
Out[5]= | BR[5, {1, -2, 1, -2, -3, 2, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 136]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 136]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 136]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 136]][t] |
Out[10]= | -2 4 2 -5 - t + - + 4 t - t t |
In[11]:= | Conway[Knot[10, 136]][z] |
Out[11]= | 4 1 - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 21], Knot[10, 136]} |
In[13]:= | {KnotDet[Knot[10, 136]], KnotSignature[Knot[10, 136]]} |
Out[13]= | {15, 2} |
In[14]:= | Jones[Knot[10, 136]][q] |
Out[14]= | -3 2 2 2 3 4 -2 + q - -- + - + 3 q - 2 q + 2 q - q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 136], Knot[11, NonAlternating, 92]} |
In[16]:= | A2Invariant[Knot[10, 136]][q] |
Out[16]= | -10 -2 4 6 8 10 12 14 q - q + q + 2 q + q + q - q - q |
In[17]:= | HOMFLYPT[Knot[10, 136]][a, z] |
Out[17]= | 2 -4 3 2 2 2 z 2 2 4 -2 - a + -- + a - 3 z + ---- + a z - z 2 2 a a |
In[18]:= | Kauffman[Knot[10, 136]][a, z] |
Out[18]= | 2 2 3 -4 3 2 2 z 4 z 2 z 4 z 2 2 7 z -2 - a - -- - a - --- - --- - 2 a z + 6 z + -- + ---- + 3 a z + ---- + 2 3 a 4 2 3 a a a a a 3 4 5 5 16 z 3 4 2 z 2 4 5 z 14 z 5 6 > ----- + 9 a z - 2 z + ---- - 4 a z - ---- - ----- - 9 a z - 3 z - a 2 3 a a a 6 7 7 8 4 z 2 6 z 3 z 7 8 z > ---- + a z + -- + ---- + 2 a z + z + -- 2 3 a 2 a a a |
In[19]:= | {Vassiliev[2][Knot[10, 136]], Vassiliev[3][Knot[10, 136]]} |
Out[19]= | {0, 1} |
In[20]:= | Kh[Knot[10, 136]][q, t] |
Out[20]= | 1 3 1 1 1 1 1 2 q 3 5 - + 2 q + 2 q + ----- + ----- + ----- + ----- + ---- + --- + - + q t + q t + q 7 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t 5 2 7 2 9 3 > q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 136], 2][q] |
Out[21]= | -10 2 -8 5 3 3 6 2 3 3 3 4 5 6 q - -- - q + -- - -- - -- + -- - -- - -- + - - q + q + q - 3 q + 2 q + 9 7 6 5 4 3 2 q q q q q q q q 7 8 10 11 12 13 > 3 q - 4 q + 3 q - 2 q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10136 |
|