© | Dror Bar-Natan: Knot Atlas: KnotTheory`:               This page is passe. Go here instead!

next up previous contents index
Next: 7.11 Khovanov Homology Up: 7 Invariants Previous: 7.9 The Kauffman Polynomial   Contents   Index


7.10 Finite Type (Vassiliev) Invariants

In[1]

In[2]:= ?Vassiliev
Vassiliev[2][K] computes the (standardly normalized) type 2 Vassiliev invariant of the knot K, i.e., the coefficient of z^2 in Conway[K][z]. Vassiliev[3][K] computes the (standardly normalized) type 3 Vassiliev invariant of the knot K, i.e., 3J''(1)-(1/36)J'''(1) where J is the Jones polynomial of K.

Thus, for example, let us reproduce Willerton's ``fish'' [Wi1,Wi2], the result of plotting the values of $ V_2(K)$ against the values of $ \pm V_3(K)$, where $ V_2(K)$ is the (standardly normalized) type 2 invariant of $ K$, $ V_3(K)$ is the (standardly normalized) type 3 invariant of $ K$, and where $ K$ runs over a set of knots with equal crossing numbers (10, in the example below):

In[3]:=  
ListPlot[
   Join @@ Table[
     K = Knot[10, k] ; v2 = Vassiliev[2][K]; v3 = Vassiliev[3][K];
     {{v2, v3}, {v2, -v3}},
     {k, 165}
   ],
   PlotStyle -> PointSize[0.02], PlotRange -> All, AspectRatio -> 1
 ]
Out[3]=
-Graphics-



Dror Bar-Natan 2005-09-14