Next: 7.10 Finite Type (Vassiliev)
Up: 7 Invariants
Previous: 7.8 The HOMFLY-PT Polynomial
  Contents
  Index
The Kauffman polynomial
(see [Ka2]) of a knot or link
is
where
is the writhe of
(see
Section 7.5.1) and where
is the regular isotopy
invariant defined by the skein relations
KnotTheory` knows about the Kauffman polynomial:
In[2]:= ?Kauffman
In[3]:= Kauffman::about
|
Thus, for example, here's the Kauffman polynomial of the knot
:
In[4]:= | Kauffman[Knot[5, 2]][a, z] |
Out[4]= | 2 4 6 5 7 2 2 4 2 6 2 3 3 5 3 -a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + 2 a z + 7 3 4 4 6 4 > a z + a z + a z |
It is well known that the Jones polynomial is related to the Kauffman polynomial via
In[5]:= | K = TorusKnot[8, 3]; |
In[6]:= | Simplify[{ (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)], Jones[K][q] }] |
Out[6]= | 7 9 16 7 9 16 {q + q - q , q + q - q } |