© | Dror Bar-Natan: Knot Atlas: KnotTheory`:               This page is passe. Go here instead!

next up previous contents index
Next: 7.10 Finite Type (Vassiliev) Up: 7 Invariants Previous: 7.8 The HOMFLY-PT Polynomial   Contents   Index


7.9 The Kauffman Polynomial

The Kauffman polynomial $ F(K)(a,z)$ (see [Ka2]) of a knot or link $ K$ is $ a^{-w(K)}L(K)$ where $ w(L)$ is the writhe of $ K$ (see Section 7.5.1) and where $ L(K)$ is the regular isotopy invariant defined by the skein relations

$\displaystyle L(s_+)=aL(s), \qquad L(s_-)=a^{-1}L(s) $

(here $ s$ is a strand and $ s_\pm$ is the same strand with a $ \pm$ kink added) and

$\displaystyle L\left(\text{\LARGE\raisebox{-4pt}{$\backoverslash$}}\right)
+L\l...
...g$}}\right)
+L\left(\text{\LARGE\raisebox{-4pt}{$\hsmoothing$}}\right)
\right)
$

and by the initial condition $ L(\bigcirc)=1$.

KnotTheory` knows about the Kauffman polynomial:

In[1]

In[2]:= ?Kauffman
Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.

In[3]:= Kauffman::about
The Kauffman program was written by Scott Morrison.

Thus, for example, here's the Kauffman polynomial of the knot $ 5_2$:

In[4]:=  
Kauffman[Knot[5, 2]][a, z]
Out[4]=
  2    4    6      5        7      2  2    4  2      6  2    3  3      5  3
-a  + a  + a  - 2 a  z - 2 a  z + a  z  - a  z  - 2 a  z  + a  z  + 2 a  z  + 
 
     7  3    4  4    6  4
>   a  z  + a  z  + a  z

It is well known that the Jones polynomial is related to the Kauffman polynomial via

$\displaystyle J(L)(q) = (-1)^cL(K)(-q^{-3/4}, q^{1/4}+q^{-1/4}), $

where $ K$ is some knot or link and where $ c$ is the number of components of $ K$. Let us verify this fact for the torus knot $ T(8,3)$:

In[5]:=  
K = TorusKnot[8, 3];
In[6]:=  
Simplify[{
   (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
   Jones[K][q]
 }]
Out[6]=
  7    9    16   7    9    16
{q  + q  - q  , q  + q  - q  }


next up previous contents index
Next: 7.10 Finite Type (Vassiliev) Up: 7 Invariants Previous: 7.8 The HOMFLY-PT Polynomial   Contents   Index
Dror Bar-Natan 2005-09-14