© | Dror Bar-Natan: Knot Atlas: KnotTheory`:               This page is passe. Go here instead!

next up previous contents index
Next: 7.9 The Kauffman Polynomial Up: 7 Invariants Previous: 7.7 The A2 Invariant   Contents   Index


7.8 The HOMFLY-PT Polynomial

The HOMFLY-PT polynomial $ H(L)(a,z)$ (see [HOMFLY] and [PT]) of a knot or link $ L$ is defined by the skein relation

$\displaystyle aH\left(\text{\LARGE\raisebox{-4pt}{$\overcrossing$}}\right)
-a^{...
...crossing$}}\right)
= zH\left(\text{\LARGE\raisebox{-4pt}{$\smoothing$}}\right)
$

and by the initial condition $ H(\bigcirc)=1$.

KnotTheory` knows about the HOMFLY-PT polynomial:

In[1]

In[2]:= ?HOMFLYPT
HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.

In[3]:= HOMFLYPT::about
The HOMFLYPT program was written by Scott Morrison.

Thus, for example, here's the HOMFLY-PT polynomial of the knot $ 8_1$:

In[4]:=  
K = Knot[8, 1];
In[5]:=  
HOMFLYPT[Knot[8, 1]][a, z]
Out[5]=
 -2    4    6    2    2  2    4  2
a   - a  + a  - z  - a  z  - a  z

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at $ a=q^{-1}$ and $ z=q^{1/2}-q^{-1/2}$ and to the Conway polynomial at $ a=1$. Indeed,

In[6]:=  
{Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]}
Out[6]=
      -6    -5    -4   2    2    2        2
{2 + q   - q   + q   - -- + -- - - - q + q , 
                        3    2   q
                       q    q
 
         -6    -5    -4   2    2    2        2
>   2 + q   - q   + q   - -- + -- - - - q + q }
                           3    2   q
                          q    q
In[7]:=  
{HOMFLYPT[K][1, z], Conway[K][z]}
Out[7]=
        2         2
{1 - 3 z , 1 - 3 z }

In our parametirzation of the $ A_2$ link invariant, it satisfies

$\displaystyle A_2(L)(q) = (-1)^c(q^2+1+q^{-2})H(L)(q^{-3}, q-q^{-1}), $

where $ L$ is some knot or link and where $ c$ is the number of components of $ L$. Let us verify this fact for the Whitehead link, $ L5a1$:

In[8]:=  
L = Link[5, Alternating, 1];
In[9]:=  
Simplify[{
   (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
   A2Invariant[L][q]
 }]
Out[9]=
      -12    -8    -6   2     -2    2    4    6
{2 - q    + q   + q   + -- + q   + q  + q  + q , 
                         4
                        q
 
         -12    -8    -6   2     -2    2    4    6
>   2 - q    + q   + q   + -- + q   + q  + q  + q }
                            4
                           q


next up previous contents index
Next: 7.9 The Kauffman Polynomial Up: 7 Invariants Previous: 7.7 The A2 Invariant   Contents   Index
Dror Bar-Natan 2005-09-14