Next: 7.9 The Kauffman Polynomial
Up: 7 Invariants
Previous: 7.7 The A2 Invariant
  Contents
  Index
The HOMFLY-PT polynomial (see [HOMFLY]
and [PT]) of a knot or link
is defined by the skein relation
KnotTheory` knows about the HOMFLY-PT polynomial:
In[2]:= ?HOMFLYPT
In[3]:= HOMFLYPT::about
|
Thus, for example, here's the HOMFLY-PT polynomial of the knot
:
In[4]:= | K = Knot[8, 1]; |
In[5]:= | HOMFLYPT[Knot[8, 1]][a, z] |
Out[5]= | -2 4 6 2 2 2 4 2 a - a + a - z - a z - a z |
It is well known that HOMFLY-PT polynomial specializes to the Jones
polynomial at and
and to the Conway
polynomial at
. Indeed,
In[6]:= | {Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]} |
Out[6]= | -6 -5 -4 2 2 2 2 {2 + q - q + q - -- + -- - - - q + q , 3 2 q q q -6 -5 -4 2 2 2 2 > 2 + q - q + q - -- + -- - - - q + q } 3 2 q q q |
In[7]:= | {HOMFLYPT[K][1, z], Conway[K][z]} |
Out[7]= | 2 2 {1 - 3 z , 1 - 3 z } |
In our parametirzation of the link invariant, it satisfies
In[8]:= | L = Link[5, Alternating, 1]; |
In[9]:= | Simplify[{ (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q], A2Invariant[L][q] }] |
Out[9]= | -12 -8 -6 2 -2 2 4 6 {2 - q + q + q + -- + q + q + q + q , 4 q -12 -8 -6 2 -2 2 4 6 > 2 - q + q + q + -- + q + q + q + q } 4 q |