Next: 7.8 The HOMFLY-PT Polynomial
Up: 7 Invariants
Previous: 7.6 The Coloured Jones
  Contents
  Index
We compute the A2 (or quantum ) invariant using the normalization
and formulas of [Kh3], which in itself
follows [Ku]:
In[2]:= ?A2Invariant
|
As an example, let us check that the knots
and
have the same Jones
polynomial but different A2 invariants:
In[3]:= | Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q] |
Out[3]= | True |
In[4]:= | A2Invariant[Knot[10, 22]][q] |
Out[4]= | -12 -8 -6 -4 2 4 6 8 10 12 14 18 -1 + q + q + q - q + -- - q - 2 q + q - q + q + q + q 2 q |
In[5]:= | A2Invariant[Knot[10, 35]][q] |
Out[5]= | -14 -12 -10 -8 2 2 2 6 8 10 14 16 18 q + q - q + q - -- + -- + q - q + q - 2 q + q - q + q + 4 2 q q 20 > q |
The A2 invariant attains 2163 values on the 2226 knots and links known to KnotTheory`:
In[6]:= | all = Join[AllKnots[], AllLinks[]]; |
In[7]:= | Length /@ {Union[A2Invariant[#][q]& /@ all], all} |
Out[7]= | {2163, 2226} |