Next: 7.7 The A2 Invariant
Up: 7 Invariants
Previous: 7.5 The Jones Polynomial
  Contents
  Index
KnotTheory` can compute the coloured Jones polynomial of braid closures, using the same formulas as in [GL]:
In[2]:= ?ColouredJones
In[3]:= ColouredJones::about
In[4]:= Options[ColouredJones]
|
Thus, for example, here's the coloured Jones polynomial of the knot
in the 4-dimensional representation of
:
In[5]:= | ColouredJones[Knot[4, 1], 3][q] |
Out[5]= | -12 -11 -10 2 2 3 3 2 4 6 8 3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + 2 q - 8 6 4 2 q q q q 10 11 12 > q - q + q |
And here's the coloured Jones polynomial of the same knot in the two
dimensional representation of ; this better be equal to the ordinary
Jones polynomial of
!
In[6]:= | ColouredJones[Knot[4, 1], 1][q] |
Out[6]= | -2 1 2 1 + q - - - q + q q |
In[7]:= | Jones[Knot[4, 1]][q] |
Out[7]= | -2 1 2 1 + q - - - q + q q |
In[8]:= ?CJ`Summand
|
The coloured Jones polynomial of is
computed via a single summation. Indeed,
In[9]:= | s = CJ`Summand[Mirror[Knot[3, 1]], n] |
Out[9]= | (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1 {CJ`q qBinomial[0, 0, ----] CJ`q 1 1 > qBinomial[CJ`k[1], 0, ----] qBinomial[CJ`k[1], CJ`k[1], ----] CJ`q CJ`q n 1 n 1 > qPochhammer[CJ`q , ----, 0] qPochhammer[CJ`q , ----, CJ`k[1]] CJ`q CJ`q n - CJ`k[1] 1 > qPochhammer[CJ`q , ----, 0], {CJ`k[1]}} CJ`q |
The symbols in the above formula require a definition:
In[10]:= ?qPochhammer
In[11]:= ?qBinomial
|
More precisely, qPochhammer[a, q, k] is
The function qExpand replaces every occurence of a qPochhammer symbol or a qBinomial symbol by its definition:
In[12]:= ?qExpand
|
Hence,
In[13]:= | qPochhammer[a, q, 6] // qExpand |
Out[13]= | 2 3 4 5 (-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q ) |
In[14]:= | First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand |
Out[14]= | 11 2 3 CJ`q (-1 + CJ`q ) (-1 + CJ`q ) |
Finally,
In[15]:= ?ColoredJones
|