© | Dror Bar-Natan: Knot Atlas: KnotTheory`:               This page is passe. Go here instead!

next up previous contents index
Next: 7.7 The A2 Invariant Up: 7 Invariants Previous: 7.5 The Jones Polynomial   Contents   Index


7.6 The Coloured Jones Polynomials

KnotTheory` can compute the coloured Jones polynomial of braid closures, using the same formulas as in [GL]:

In[1]

In[2]:= ?ColouredJones
ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.

In[3]:= ColouredJones::about
The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.

In[4]:= Options[ColouredJones]
{Compute -> True}

Thus, for example, here's the coloured Jones polynomial of the knot $ 4_1$ in the 4-dimensional representation of $ sl(2)$:

In[5]:=  
ColouredJones[Knot[4, 1], 3][q]
Out[5]=
     -12    -11    -10   2    2    3    3       2      4      6      8
3 + q    - q    - q    + -- - -- + -- - -- - 3 q  + 3 q  - 2 q  + 2 q  - 
                          8    6    4    2
                         q    q    q    q
 
     10    11    12
>   q   - q   + q

And here's the coloured Jones polynomial of the same knot in the two dimensional representation of $ sl(2)$; this better be equal to the ordinary Jones polynomial of $ 4_1$!

In[6]:=  
ColouredJones[Knot[4, 1], 1][q]
Out[6]=
     -2   1        2
1 + q   - - - q + q
          q
In[7]:=  
Jones[Knot[4, 1]][q]
Out[7]=
     -2   1        2
1 + q   - - - q + q
          q

In[8]:= ?CJ`Summand
CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.

The coloured Jones polynomial of $ 3_1$ is computed via a single summation. Indeed,

In[9]:=  
s = CJ`Summand[Mirror[Knot[3, 1]], n]
Out[9]=
     (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2                  1
{CJ`q                                         qBinomial[0, 0, ----] 
                                                              CJ`q
 
                            1                                 1
>    qBinomial[CJ`k[1], 0, ----] qBinomial[CJ`k[1], CJ`k[1], ----] 
                           CJ`q                              CJ`q
 
                     n   1                       n   1
>    qPochhammer[CJ`q , ----, 0] qPochhammer[CJ`q , ----, CJ`k[1]] 
                        CJ`q                        CJ`q
 
                     n - CJ`k[1]   1
>    qPochhammer[CJ`q           , ----, 0], {CJ`k[1]}}
                                  CJ`q

The symbols in the above formula require a definition:

In[10]:= ?qPochhammer
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/

In[11]:= ?qBinomial
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].

More precisely, qPochhammer[a, q, k] is

$\displaystyle (a;q)_k=\begin{cases}
(1-a)(1-aq)\dots(1-aq^{k-1}) & k>0 \\
1 & k=0 \\
\left((1-aq^{-1})(1-aq^{-2})\dots(1-aq^{k})\right)^{-1} & k<0
\end{cases}$

and qBinomial[n, k, q] is

$\displaystyle \binom{n}{k}_q = \begin{cases}
\frac
{\displaystyle (q^{n-k+1};q)_k}
{\displaystyle (q;q)_k
} & k\geq 0 \\
0 & k<0.
\end{cases}$

The function qExpand replaces every occurence of a qPochhammer symbol or a qBinomial symbol by its definition:

In[12]:= ?qExpand
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.

Hence,

In[13]:=  
qPochhammer[a, q, 6] // qExpand
Out[13]=
                             2           3           4           5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )
In[14]:=  
First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand
Out[14]=
    11           2            3
CJ`q   (-1 + CJ`q ) (-1 + CJ`q )

Finally,

In[15]:= ?ColoredJones
Type ColoredJones and see for yourself.


next up previous contents index
Next: 7.7 The A2 Invariant Up: 7 Invariants Previous: 7.5 The Jones Polynomial   Contents   Index
Dror Bar-Natan 2005-09-14