n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 |
q-6 - q-5 - q-4 + 2q-3 - q-2 - q-1 + 3 - q - q2 + 2q3 - q4 - q5 + q6 |
3 |
q-12 - q-11 - q-10 + 2q-8 - 2q-6 + 3q-4 - 3q-2 + 3 - 3q2 + 3q4 - 2q6 + 2q8 - q10 - q11 + q12 |
4 |
q-20 - q-19 - q-18 + 3q-15 - q-14 - q-13 - q-12 - q-11 + 5q-10 - q-9 - 2q-8 - 2q-7 - q-6 + 6q-5 - q-4 - 2q-3 - 2q-2 - q-1 + 7 - q - 2q2 - 2q3 - q4 + 6q5 - q6 - 2q7 - 2q8 - q9 + 5q10 - q11 - q12 - q13 - q14 + 3q15 - q18 - q19 + q20 |
5 |
q-30 - q-29 - q-28 + q-25 + 2q-24 - 2q-22 - q-21 - q-20 + q-19 + 3q-18 + q-17 - 2q-16 - 3q-15 - 2q-14 + 2q-13 + 4q-12 + 2q-11 - 2q-10 - 4q-9 - 2q-8 + 2q-7 + 5q-6 + 2q-5 - 2q-4 - 5q-3 - 2q-2 + 2q-1 + 5 + 2q - 2q2 - 5q3 - 2q4 + 2q5 + 5q6 + 2q7 - 2q8 - 4q9 - 2q10 + 2q11 + 4q12 + 2q13 - 2q14 - 3q15 - 2q16 + q17 + 3q18 + q19 - q20 - q21 - 2q22 + 2q24 + q25 - q28 - q29 + q30 |
6 |
q-42 - q-41 - q-40 + q-37 + 3q-35 - q-34 - 2q-33 - q-32 - q-31 + 6q-28 - q-27 - 2q-26 - 2q-25 - 2q-24 - q-23 + 9q-21 - 2q-19 - 3q-18 - 3q-17 - 2q-16 + 11q-14 - 2q-12 - 4q-11 - 4q-10 - 2q-9 + 12q-7 - 2q-5 - 4q-4 - 4q-3 - 2q-2 + 13 - 2q2 - 4q3 - 4q4 - 2q5 + 12q7 - 2q9 - 4q10 - 4q11 - 2q12 + 11q14 - 2q16 - 3q17 - 3q18 - 2q19 + 9q21 - q23 - 2q24 - 2q25 - 2q26 - q27 + 6q28 - q31 - q32 - 2q33 - q34 + 3q35 + q37 - q40 - q41 + q42 |
7 |
q-56 - q-55 - q-54 + q-51 + q-49 + 2q-48 - q-47 - 2q-46 - q-45 - 2q-44 + q-43 + q-41 + 5q-40 - 2q-38 - 2q-37 - 4q-36 + 2q-33 + 7q-32 + q-31 - q-30 - 2q-29 - 7q-28 - 2q-27 + 2q-25 + 9q-24 + 2q-23 - 3q-21 - 9q-20 - 3q-19 + 3q-17 + 10q-16 + 3q-15 - 3q-13 - 10q-12 - 3q-11 + 3q-9 + 11q-8 + 3q-7 - 3q-5 - 11q-4 - 3q-3 + 3q-1 + 11 + 3q - 3q3 - 11q4 - 3q5 + 3q7 + 11q8 + 3q9 - 3q11 - 10q12 - 3q13 + 3q15 + 10q16 + 3q17 - 3q19 - 9q20 - 3q21 + 2q23 + 9q24 + 2q25 - 2q27 - 7q28 - 2q29 - q30 + q31 + 7q32 + 2q33 - 4q36 - 2q37 - 2q38 + 5q40 + q41 + q43 - 2q44 - q45 - 2q46 - q47 + 2q48 + q49 + q51 - q54 - q55 + q56 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | PD[Knot[4, 1]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 6, 1, 5], X[6, 3, 7, 4], X[2, 7, 3, 8]] |
In[3]:= | GaussCode[Knot[4, 1]] |
Out[3]= | GaussCode[1, -4, 3, -1, 2, -3, 4, -2] |
In[4]:= | DTCode[Knot[4, 1]] |
Out[4]= | DTCode[4, 6, 8, 2] |
In[5]:= | br = BR[Knot[4, 1]] |
Out[5]= | BR[3, {-1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 4} |
In[7]:= | BraidIndex[Knot[4, 1]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[4, 1]]] |
|  |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[4, 1]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 1, 1, 2, 3, 1} |
In[10]:= | alex = Alexander[Knot[4, 1]][t] |
Out[10]= | 1
3 - - - t
t |
In[11]:= | Conway[Knot[4, 1]][z] |
Out[11]= | 2
1 - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[4, 1]} |
In[13]:= | {KnotDet[Knot[4, 1]], KnotSignature[Knot[4, 1]]} |
Out[13]= | {5, 0} |
In[14]:= | Jones[Knot[4, 1]][q] |
Out[14]= | -2 1 2
1 + q - - - q + q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[4, 1], Knot[11, NonAlternating, 19]} |
In[16]:= | A2Invariant[Knot[4, 1]][q] |
Out[16]= | -8 -6 6 8
-1 + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[4, 1]][a, z] |
Out[17]= | -2 2 2
-1 + a + a - z |
In[18]:= | Kauffman[Knot[4, 1]][a, z] |
Out[18]= | 2 3
-2 2 z 2 z 2 2 z 3
-1 - a - a - - - a z + 2 z + -- + a z + -- + a z
a 2 a
a |
In[19]:= | {Vassiliev[2][Knot[4, 1]], Vassiliev[3][Knot[4, 1]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[4, 1]][q, t] |
Out[20]= | 1 1 1 5 2
- + q + ----- + --- + q t + q t
q 5 2 q t
q t |
In[21]:= | ColouredJones[Knot[4, 1], 2][q] |
Out[21]= | -6 -5 -4 2 -2 1 2 3 4 5 6
3 + q - q - q + -- - q - - - q - q + 2 q - q - q + q
3 q
q |