© | Dror Bar-Natan: Knot Atlas: KnotTheory`:               This page is passe. Go here instead!

next up previous contents index
Next: 7.3 The Alexander-Conway Polynomial Up: 7 Invariants Previous: 7.1 Invariants from Braid   Contents   Index


7.2 Three Dimensional Invariants

In[1]

In[2]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.

In[3]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The unknotting number of a knot $ K$ is the minimal number of crossing changes needed in order to unknot $ K$.

In[4]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[5]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:

In[6]:=  
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
Out[6]=
u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]

There are 4 knots with up to 9 crossings whose unknotting number is unknown:

In[7]:=  
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
Out[7]=
{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}

In[8]:= ?ThreeGenus
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.

In[9]:= ThreeGenus::about
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The bridge index of a knot $ K$ is the minimal number of local maxima (or local minima) in a generic smooth embedding of $ K$ in $ {\mathbb{R}}^3$.

In[10]:= ?BridgeIndex
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.

In[11]:= BridgeIndex::about
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:

In[12]:=  
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
Out[12]=
{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], 
 
>   Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], 
 
>   Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], 
 
>   Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], 
 
>   Knot[9, 26], Knot[9, 27], Knot[9, 31]}

The super bridge index of a knot $ K$ is the minimal number, in a generic smooth embedding of $ K$ in $ {\mathbb{R}}^3$, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.

In[13]:= ?SuperBridgeIndex
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[14]:= SuperBridgeIndex::about
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

In[15]:= ?NakanishiIndex
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.

In[16]:= NakanishiIndex::about
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

In[17]:=  
Profile[K_] := Profile[
   SymmetryType[K], UnknottingNumber[K], ThreeGenus[K]
   BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]
 ]
In[18]:=  
Profile[Knot[9,24]]
Out[18]=
Profile[Reversible, 1, 9, {4, 6}, 1]
In[19]:=  
Ks = Select[
   AllKnots[],
   (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&
 ]
Out[19]=
{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
In[20]:=  
Alexander[#][t]& /@ Ks
Out[20]=
       -3   5    10             2    3
{13 - t   + -- - -- - 10 t + 5 t  - t , 
             2   t
            t
 
           -3   5    12             2    3
>   -15 + t   - -- + -- + 12 t - 5 t  + t , 
                 2   t
                t
 
          -3   5    12             2    3
>   17 - t   + -- - -- - 12 t + 5 t  - t , 
                2   t
               t
 
          -3   6    16             2    3
>   23 - t   + -- - -- - 16 t + 6 t  - t }
                2   t
               t


next up previous contents index
Next: 7.3 The Alexander-Conway Polynomial Up: 7 Invariants Previous: 7.1 Invariants from Braid   Contents   Index
Dror Bar-Natan 2005-09-14