Next: 7.3 The Alexander-Conway Polynomial
Up: 7 Invariants
Previous: 7.1 Invariants from Braid
  Contents
  Index
In[2]:= ?SymmetryType
In[3]:= SymmetryType::about
|
The unknotting number of a knot is the minimal number of crossing
changes needed in order to unknot
.
In[4]:= ?UnknottingNumber
In[5]:= UnknottingNumber::about
|
Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:
In[6]:= | Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] |
Out[6]= | u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5] |
There are 4 knots with up to 9 crossings whose unknotting number is unknown:
In[7]:= | Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
Out[7]= | {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]} |
In[8]:= ?ThreeGenus
In[9]:= ThreeGenus::about
|
The bridge index of a knot is the minimal number of local maxima (or
local minima) in a generic smooth embedding of
in
.
In[10]:= ?BridgeIndex
In[11]:= BridgeIndex::about
|
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
In[12]:= | Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &] |
Out[12]= | {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], > Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], > Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], > Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], > Knot[9, 26], Knot[9, 27], Knot[9, 31]} |
The super bridge index of a knot is the minimal number, in a
generic smooth embedding of
in
, of the maximal number of local
maxima (or local minima) in a rigid rotation of that projection.
In[13]:= ?SuperBridgeIndex
In[14]:= SuperBridgeIndex::about
|
In[15]:= ?NakanishiIndex
In[16]:= NakanishiIndex::about
|
In[17]:= | Profile[K_] := Profile[ SymmetryType[K], UnknottingNumber[K], ThreeGenus[K] BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K] ] |
In[18]:= | Profile[Knot[9,24]] |
Out[18]= | Profile[Reversible, 1, 9, {4, 6}, 1] |
In[19]:= | Ks = Select[ AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])& ] |
Out[19]= | {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]} |
In[20]:= | Alexander[#][t]& /@ Ks |
Out[20]= | -3 5 10 2 3 {13 - t + -- - -- - 10 t + 5 t - t , 2 t t -3 5 12 2 3 > -15 + t - -- + -- + 12 t - 5 t + t , 2 t t -3 5 12 2 3 > 17 - t + -- - -- - 12 t + 5 t - t , 2 t t -3 6 16 2 3 > 23 - t + -- - -- - 16 t + 6 t - t } 2 t t |