Next: 7.4 The Determinant and
Up: 7 Invariants
Previous: 7.2 Three Dimensional Invariants
  Contents
  Index
In[2]:= ?Alexander
In[3]:= Alexander::about
In[4]:= ?Conway
|
The Alexander polynomial and the Conway polynomial
of a
knot
always satisfy
. Let us verify
this relation for the knot
:
In[5]:= | alex = Alexander[Knot[8, 18]][t] |
Out[5]= | -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t |
In[6]:= | Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]] |
Out[6]= | -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t |
The determinant of a knot is
. Hence for
it is
In[7]:= | Abs[alex /. t -> -1] |
Out[7]= | 45 |
Alternatively (see Section 7.4):
In[8]:= | KnotDet[Knot[8, 18]] |
Out[8]= | 45 |
, the (standardly normalized) type 2 Vassiliev invariant of
a knot
is the coefficient of
in its Conway polynomial
In[9]:= | Coefficient[Conway[Knot[8, 18]][z], z^2] |
Out[9]= | 1 |
Alternatively (see Section 7.10),
In[10]:= | Vassiliev[2][Knot[8, 18]] |
Out[10]= | 0 |
Sometimes two knots have the same Alexander polynomial but different
Alexander ideals. An example is the pair
K11a99 and
K11a277. They have the same Alexander
polynomial, but the second Alexander ideal of the first knot is the whole
ring
while the second Alexander ideal of the second knot is the
smaller ideal generated by
and by
:
In[11]:= | {K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]}; |
In[12]:= | Alexander[K1] == Alexander[K2] |
Out[12]= | True |
In[13]:= | Alexander[K1, 2][t] |
Out[13]= | {1} |
In[14]:= | Alexander[K2, 2][t] |
Out[14]= | {3, 1 + t} |
Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`:
In[15]:= | Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]} |
Out[15]= | {551, 802} |