© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
8.17
817
8.19
819
    8.18
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 818   

Visit 818's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 818's page at Knotilus!

Acknowledgement

8.18
KnotPlot

Further views:   IGKT
Logo of the International Guild of Knot Tyers
A charity logo in Porto
A charity logo in Porto
Laser Cut by Tom Longtin
A laser cut by Tom Longtin

PD Presentation: X6271 X8394 X16,11,1,12 X2,14,3,13 X4,15,5,16 X10,6,11,5 X12,7,13,8 X14,10,15,9

Gauss Code: {1, -4, 2, -5, 6, -1, 7, -2, 8, -6, 3, -7, 4, -8, 5, -3}

DT (Dowker-Thistlethwaite) Code: 6 8 10 12 14 16 2 4

Minimum Braid Representative:


Length is 8, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
FullyAmphicheiral 2 3 3 / 4 2

Alexander Polynomial: - t-3 + 5t-2 - 10t-1 + 13 - 10t + 5t2 - t3

Conway Polynomial: 1 + z2 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {924, K11n85, K11n164, ...}

Determinant and Signature: {45, 0}

Jones Polynomial: q-4 - 4q-3 + 6q-2 - 7q-1 + 9 - 7q + 6q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-12 - 2q-10 - q-6 - q-4 + 4q-2 + 1 + 4q2 - q4 - q6 - 2q10 + q12

HOMFLY-PT Polynomial: - a-2 + a-2z2 + a-2z4 + 3 - z2 - 3z4 - z6 - a2 + a2z2 + a2z4

Kauffman Polynomial: a-4z4 - 4a-3z3 + 4a-3z5 + a-2 + 3a-2z2 - 9a-2z4 + 6a-2z6 + a-1z - 9a-1z3 + 3a-1z5 + 3a-1z7 + 3 + 6z2 - 20z4 + 12z6 + az - 9az3 + 3az5 + 3az7 + a2 + 3a2z2 - 9a2z4 + 6a2z6 - 4a3z3 + 4a3z5 + a4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 818. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9        1
j = 7       3 
j = 5      31 
j = 3     43  
j = 1    53   
j = -1   35    
j = -3  34     
j = -5 13      
j = -7 3       
j = -91        

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-12 - 4q-11 + 2q-10 + 13q-9 - 21q-8 - 4q-7 + 41q-6 - 38q-5 - 20q-4 + 69q-3 - 43q-2 - 36q-1 + 81 - 36q - 43q2 + 69q3 - 20q4 - 38q5 + 41q6 - 4q7 - 21q8 + 13q9 + 2q10 - 4q11 + q12
3 q-24 - 4q-23 + 2q-22 + 9q-21 - q-20 - 24q-19 - 10q-18 + 55q-17 + 27q-16 - 79q-15 - 73q-14 + 108q-13 + 130q-12 - 121q-11 - 199q-10 + 119q-9 + 266q-8 - 105q-7 - 322q-6 + 74q-5 + 374q-4 - 53q-3 - 389q-2 + 10q-1 + 411 + 10q - 389q2 - 53q3 + 374q4 + 74q5 - 322q6 - 105q7 + 266q8 + 119q9 - 199q10 - 121q11 + 130q12 + 108q13 - 73q14 - 79q15 + 27q16 + 55q17 - 10q18 - 24q19 - q20 + 9q21 + 2q22 - 4q23 + q24
4 q-40 - 4q-39 + 2q-38 + 9q-37 - 5q-36 - 4q-35 - 30q-34 + 14q-33 + 66q-32 + 10q-31 - 20q-30 - 173q-29 - 36q-28 + 217q-27 + 184q-26 + 77q-25 - 483q-24 - 344q-23 + 280q-22 + 558q-21 + 530q-20 - 729q-19 - 930q-18 - 11q-17 + 880q-16 + 1297q-15 - 647q-14 - 1490q-13 - 605q-12 + 916q-11 + 2042q-10 - 297q-9 - 1774q-8 - 1196q-7 + 714q-6 + 2508q-5 + 97q-4 - 1785q-3 - 1595q-2 + 427q-1 + 2659 + 427q - 1595q2 - 1785q3 + 97q4 + 2508q5 + 714q6 - 1196q7 - 1774q8 - 297q9 + 2042q10 + 916q11 - 605q12 - 1490q13 - 647q14 + 1297q15 + 880q16 - 11q17 - 930q18 - 729q19 + 530q20 + 558q21 + 280q22 - 344q23 - 483q24 + 77q25 + 184q26 + 217q27 - 36q28 - 173q29 - 20q30 + 10q31 + 66q32 + 14q33 - 30q34 - 4q35 - 5q36 + 9q37 + 2q38 - 4q39 + q40
5 q-60 - 4q-59 + 2q-58 + 9q-57 - 5q-56 - 8q-55 - 10q-54 - 6q-53 + 25q-52 + 59q-51 + 15q-50 - 78q-49 - 132q-48 - 88q-47 + 108q-46 + 310q-45 + 309q-44 - 82q-43 - 588q-42 - 694q-41 - 160q-40 + 793q-39 + 1380q-38 + 769q-37 - 888q-36 - 2171q-35 - 1762q-34 + 471q-33 + 2960q-32 + 3222q-31 + 409q-30 - 3440q-29 - 4844q-28 - 1921q-27 + 3420q-26 + 6480q-25 + 3843q-24 - 2833q-23 - 7798q-22 - 5983q-21 + 1728q-20 + 8665q-19 + 8083q-18 - 291q-17 - 9075q-16 - 9861q-15 - 1314q-14 + 9043q-13 + 11334q-12 + 2801q-11 - 8752q-10 - 12285q-9 - 4191q-8 + 8219q-7 + 13045q-6 + 5245q-5 - 7664q-4 - 13289q-3 - 6232q-2 + 6937q-1 + 13529 + 6937q - 6232q2 - 13289q3 - 7664q4 + 5245q5 + 13045q6 + 8219q7 - 4191q8 - 12285q9 - 8752q10 + 2801q11 + 11334q12 + 9043q13 - 1314q14 - 9861q15 - 9075q16 - 291q17 + 8083q18 + 8665q19 + 1728q20 - 5983q21 - 7798q22 - 2833q23 + 3843q24 + 6480q25 + 3420q26 - 1921q27 - 4844q28 - 3440q29 + 409q30 + 3222q31 + 2960q32 + 471q33 - 1762q34 - 2171q35 - 888q36 + 769q37 + 1380q38 + 793q39 - 160q40 - 694q41 - 588q42 - 82q43 + 309q44 + 310q45 + 108q46 - 88q47 - 132q48 - 78q49 + 15q50 + 59q51 + 25q52 - 6q53 - 10q54 - 8q55 - 5q56 + 9q57 + 2q58 - 4q59 + q60
6 q-84 - 4q-83 + 2q-82 + 9q-81 - 5q-80 - 8q-79 - 14q-78 + 14q-77 + 5q-76 + 18q-75 + 64q-74 - 33q-73 - 91q-72 - 142q-71 - 12q-70 + 79q-69 + 240q-68 + 452q-67 + 89q-66 - 372q-65 - 894q-64 - 700q-63 - 286q-62 + 804q-61 + 2153q-60 + 1773q-59 + 283q-58 - 2351q-57 - 3566q-56 - 3627q-55 - 523q-54 + 4727q-53 + 7138q-52 + 5812q-51 - 686q-50 - 7202q-49 - 12365q-48 - 9094q-47 + 2360q-46 + 13358q-45 + 18364q-44 + 10619q-43 - 3858q-42 - 21807q-41 - 26164q-40 - 12005q-39 + 11102q-38 + 31253q-37 + 31409q-36 + 13077q-35 - 21636q-34 - 43154q-33 - 36283q-32 - 5200q-31 + 33899q-30 + 51716q-29 + 39414q-28 - 7797q-27 - 49853q-26 - 59515q-25 - 29741q-24 + 23826q-23 + 62146q-22 + 63867q-21 + 12957q-20 - 45038q-19 - 73279q-18 - 51845q-17 + 7933q-16 + 62275q-15 + 79256q-14 + 31297q-13 - 34984q-12 - 77600q-11 - 65954q-10 - 6236q-9 + 57322q-8 + 86030q-7 + 43450q-6 - 25252q-5 - 76697q-4 - 73175q-3 - 16550q-2 + 51151q-1 + 87709 + 51151q - 16550q2 - 73175q3 - 76697q4 - 25252q5 + 43450q6 + 86030q7 + 57322q8 - 6236q9 - 65954q10 - 77600q11 - 34984q12 + 31297q13 + 79256q14 + 62275q15 + 7933q16 - 51845q17 - 73279q18 - 45038q19 + 12957q20 + 63867q21 + 62146q22 + 23826q23 - 29741q24 - 59515q25 - 49853q26 - 7797q27 + 39414q28 + 51716q29 + 33899q30 - 5200q31 - 36283q32 - 43154q33 - 21636q34 + 13077q35 + 31409q36 + 31253q37 + 11102q38 - 12005q39 - 26164q40 - 21807q41 - 3858q42 + 10619q43 + 18364q44 + 13358q45 + 2360q46 - 9094q47 - 12365q48 - 7202q49 - 686q50 + 5812q51 + 7138q52 + 4727q53 - 523q54 - 3627q55 - 3566q56 - 2351q57 + 283q58 + 1773q59 + 2153q60 + 804q61 - 286q62 - 700q63 - 894q64 - 372q65 + 89q66 + 452q67 + 240q68 + 79q69 - 12q70 - 142q71 - 91q72 - 33q73 + 64q74 + 18q75 + 5q76 + 14q77 - 14q78 - 8q79 - 5q80 + 9q81 + 2q82 - 4q83 + q84
7 q-112 - 4q-111 + 2q-110 + 9q-109 - 5q-108 - 8q-107 - 14q-106 + 10q-105 + 25q-104 - 2q-103 + 23q-102 + 16q-101 - 46q-100 - 91q-99 - 120q-98 + q-97 + 194q-96 + 228q-95 + 305q-94 + 159q-93 - 265q-92 - 667q-91 - 1062q-90 - 701q-89 + 318q-88 + 1373q-87 + 2402q-86 + 2319q-85 + 673q-84 - 1836q-83 - 4899q-82 - 5994q-81 - 3738q-80 + 996q-79 + 7628q-78 + 11884q-77 + 10820q-76 + 3971q-75 - 8456q-74 - 19772q-73 - 23149q-72 - 15565q-71 + 3896q-70 + 26043q-69 + 39541q-68 + 36591q-67 + 11339q-66 - 25804q-65 - 57204q-64 - 66358q-63 - 39973q-62 + 12511q-61 + 68336q-60 + 100926q-59 + 83792q-58 + 19179q-57 - 66151q-56 - 133172q-55 - 137679q-54 - 70621q-53 + 42889q-52 + 153359q-51 + 194934q-50 + 139172q-49 + 3442q-48 - 154136q-47 - 245138q-46 - 216584q-45 - 71245q-44 + 130992q-43 + 279711q-42 + 293462q-41 + 153405q-40 - 85147q-39 - 293239q-38 - 360206q-37 - 240305q-36 + 21900q-35 + 284890q-34 + 410240q-33 + 322851q-32 + 50497q-31 - 258503q-30 - 441071q-29 - 393503q-28 - 123370q-27 + 219717q-26 + 454109q-25 + 448852q-24 + 189820q-23 - 176053q-22 - 453071q-21 - 487746q-20 - 245868q-19 + 132559q-18 + 443069q-17 + 513256q-16 + 289741q-15 - 94142q-14 - 428270q-13 - 527350q-12 - 322834q-11 + 60878q-10 + 412390q-9 + 535248q-8 + 347117q-7 - 34348q-6 - 396718q-5 - 537790q-4 - 365850q-3 + 10559q-2 + 381625q-1 + 539297 + 381625q + 10559q2 - 365850q3 - 537790q4 - 396718q5 - 34348q6 + 347117q7 + 535248q8 + 412390q9 + 60878q10 - 322834q11 - 527350q12 - 428270q13 - 94142q14 + 289741q15 + 513256q16 + 443069q17 + 132559q18 - 245868q19 - 487746q20 - 453071q21 - 176053q22 + 189820q23 + 448852q24 + 454109q25 + 219717q26 - 123370q27 - 393503q28 - 441071q29 - 258503q30 + 50497q31 + 322851q32 + 410240q33 + 284890q34 + 21900q35 - 240305q36 - 360206q37 - 293239q38 - 85147q39 + 153405q40 + 293462q41 + 279711q42 + 130992q43 - 71245q44 - 216584q45 - 245138q46 - 154136q47 + 3442q48 + 139172q49 + 194934q50 + 153359q51 + 42889q52 - 70621q53 - 137679q54 - 133172q55 - 66151q56 + 19179q57 + 83792q58 + 100926q59 + 68336q60 + 12511q61 - 39973q62 - 66358q63 - 57204q64 - 25804q65 + 11339q66 + 36591q67 + 39541q68 + 26043q69 + 3896q70 - 15565q71 - 23149q72 - 19772q73 - 8456q74 + 3971q75 + 10820q76 + 11884q77 + 7628q78 + 996q79 - 3738q80 - 5994q81 - 4899q82 - 1836q83 + 673q84 + 2319q85 + 2402q86 + 1373q87 + 318q88 - 701q89 - 1062q90 - 667q91 - 265q92 + 159q93 + 305q94 + 228q95 + 194q96 + q97 - 120q98 - 91q99 - 46q100 + 16q101 + 23q102 - 2q103 + 25q104 + 10q105 - 14q106 - 8q107 - 5q108 + 9q109 + 2q110 - 4q111 + q112


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[8, 18]]
Out[2]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[16, 11, 1, 12], X[2, 14, 3, 13], 
 
>   X[4, 15, 5, 16], X[10, 6, 11, 5], X[12, 7, 13, 8], X[14, 10, 15, 9]]
In[3]:=
GaussCode[Knot[8, 18]]
Out[3]=   
GaussCode[1, -4, 2, -5, 6, -1, 7, -2, 8, -6, 3, -7, 4, -8, 5, -3]
In[4]:=
DTCode[Knot[8, 18]]
Out[4]=   
DTCode[6, 8, 10, 12, 14, 16, 2, 4]
In[5]:=
br = BR[Knot[8, 18]]
Out[5]=   
BR[3, {-1, 2, -1, 2, -1, 2, -1, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 8}
In[7]:=
BraidIndex[Knot[8, 18]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[8, 18]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[8, 18]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{FullyAmphicheiral, 2, 3, 3, 4, 2}
In[10]:=
alex = Alexander[Knot[8, 18]][t]
Out[10]=   
      -3   5    10             2    3
13 - t   + -- - -- - 10 t + 5 t  - t
            2   t
           t
In[11]:=
Conway[Knot[8, 18]][z]
Out[11]=   
     2    4    6
1 + z  - z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
 
>   Knot[11, NonAlternating, 164]}
In[13]:=
{KnotDet[Knot[8, 18]], KnotSignature[Knot[8, 18]]}
Out[13]=   
{45, 0}
In[14]:=
Jones[Knot[8, 18]][q]
Out[14]=   
     -4   4    6    7            2      3    4
9 + q   - -- + -- - - - 7 q + 6 q  - 4 q  + q
           3    2   q
          q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[8, 18]}
In[16]:=
A2Invariant[Knot[8, 18]][q]
Out[16]=   
     -12    2     -6    -4   4       2    4    6      10    12
1 + q    - --- - q   - q   + -- + 4 q  - q  - q  - 2 q   + q
            10                2
           q                 q
In[17]:=
HOMFLYPT[Knot[8, 18]][a, z]
Out[17]=   
                     2                   4
     -2    2    2   z     2  2      4   z     2  4    6
3 - a   - a  - z  + -- + a  z  - 3 z  + -- + a  z  - z
                     2                   2
                    a                   a
In[18]:=
Kauffman[Knot[8, 18]][a, z]
Out[18]=   
                                   2                3      3
     -2    2   z            2   3 z       2  2   4 z    9 z         3
3 + a   + a  + - + a z + 6 z  + ---- + 3 a  z  - ---- - ---- - 9 a z  - 
               a                  2                3     a
                                 a                a
 
                       4      4                        5      5
       3  3       4   z    9 z       2  4    4  4   4 z    3 z         5
>   4 a  z  - 20 z  + -- - ---- - 9 a  z  + a  z  + ---- + ---- + 3 a z  + 
                       4     2                        3     a
                      a     a                        a
 
                         6                7
       3  5       6   6 z       2  6   3 z         7
>   4 a  z  + 12 z  + ---- + 6 a  z  + ---- + 3 a z
                        2               a
                       a
In[19]:=
{Vassiliev[2][Knot[8, 18]], Vassiliev[3][Knot[8, 18]]}
Out[19]=   
{1, 0}
In[20]:=
Kh[Knot[8, 18]][q, t]
Out[20]=   
5           1       3       1       3       3      4      3               3
- + 5 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t + 4 q  t + 
q          9  4    7  3    5  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t    q  t    q  t
 
       3  2      5  2    5  3      7  3    9  4
>   3 q  t  + 3 q  t  + q  t  + 3 q  t  + q  t
In[21]:=
ColouredJones[Knot[8, 18], 2][q]
Out[21]=   
      -12    4     2    13   21   4    41   38   20   69   43   36
81 + q    - --- + --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 36 q - 
             11    10    9    8    7    6    5    4    3    2   q
            q     q     q    q    q    q    q    q    q    q
 
        2       3       4       5       6      7       8       9      10
>   43 q  + 69 q  - 20 q  - 38 q  + 41 q  - 4 q  - 21 q  + 13 q  + 2 q   - 
 
       11    12
>   4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 818
8.17
817
8.19
819