© | Dror Bar-Natan: Knot Atlas: KnotTheory`:               This page is passe. Go here instead!

next up previous contents index
Next: 7.5 The Jones Polynomial Up: 7 Invariants Previous: 7.3 The Alexander-Conway Polynomial   Contents   Index


7.4 The Determinant and the Signature

In[1]

In[2]:= ?KnotDet
KnotDet[K] returns the determinant of a knot K.

In[3]:= ?KnotSignature
KnotSignature[K] returns the signature of a knot K.

Thus, for example, the knots $ 5_1$ and $ 10_{132}$ have the same determinant (and even the same Alexander and Jones polynomials), but different signatures:

Figure 5: The knots $ 5_1$ and $ 10_{132}$.
\begin{figure}\centering {
\includegraphics[height=2cm]{figs/5.1.eps}
\qquad\includegraphics[height=2cm]{figs/10.132.eps}
}
\end{figure}

In[4]:=  
KnotDet /@ {Knot[5, 1], Knot[10, 132]}
Out[4]=
{5, 5}
In[5]:=  
{
   Equal @@ (Jones[#][q]& /@ {Knot[5, 1], Knot[10, 132]}),
   Equal @@ (Alexander[#][t]& /@ {Knot[5, 1], Knot[10, 132]})
 }
Out[5]=
{True, True}
In[6]:=  
KnotSignature /@ {Knot[5, 1], Knot[10, 132]}
Out[6]=
{-4, 0}



Dror Bar-Natan 2005-09-14