© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10132Visit 10132's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10132's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X8493 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X2837 |
Gauss Code: | {1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -12 2 -16 -6 -20 -18 -10 -14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 - t-1 + 1 - t + t2 |
Conway Polynomial: | 1 + 3z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {51, ...} |
Determinant and Signature: | {5, 0} |
Jones Polynomial: | - q-7 + q-6 - q-5 + q-4 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {51, ...} |
A2 (sl(3)) Invariant: | - q-22 - q-20 - q-18 + q-14 + q-12 + 2q-10 + q-8 + q-6 |
HOMFLY-PT Polynomial: | 3a4 + 4a4z2 + a4z4 - 2a6 - a6z2 |
Kauffman Polynomial: | - az - a2z2 - 4a3z + 9a3z3 - 6a3z5 + a3z7 + 3a4 - 7a4z2 + 10a4z4 - 6a4z6 + a4z8 - 8a5z + 19a5z3 - 12a5z5 + 2a5z7 + 2a6 - 6a6z2 + 10a6z4 - 6a6z6 + a6z8 - 5a7z + 10a7z3 - 6a7z5 + a7z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, -5} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10132. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-21 - q-20 - q-19 + 2q-18 - q-17 - q-16 + 2q-15 - 2q-14 + 2q-12 - 3q-11 + q-10 + 2q-9 - 3q-8 + 2q-7 + 2q-6 - 4q-5 + 3q-4 + q-3 - 3q-2 + 2q-1 + 1 - q |
3 | - q-42 + q-41 + q-40 - 2q-38 + 2q-36 - 2q-34 + 3q-32 - q-31 - 3q-30 + q-29 + 4q-28 - q-27 - 5q-26 + q-25 + 5q-24 - q-23 - 5q-22 + 5q-20 - 4q-18 - q-17 + 4q-16 + q-15 - 3q-14 - 2q-13 + 3q-12 + q-11 - 2q-10 - 2q-9 + 3q-8 + 2q-7 - q-6 - 2q-5 + q-4 + 2q-3 - q-1 |
4 | q-70 - q-69 - q-68 + 3q-65 - q-64 - q-63 - q-62 - q-61 + 4q-60 - q-59 - q-58 - 2q-57 + 5q-55 - q-54 - 2q-53 - 4q-52 + q-51 + 6q-50 + q-49 - 2q-48 - 6q-47 + 6q-45 + 2q-44 - 2q-43 - 5q-42 + 5q-40 + q-39 - 3q-38 - 3q-37 + q-36 + 6q-35 - q-34 - 5q-33 - 2q-32 + 2q-31 + 8q-30 - 2q-29 - 7q-28 - 2q-27 + 2q-26 + 10q-25 - 2q-24 - 9q-23 - 2q-22 + 2q-21 + 11q-20 - 3q-19 - 10q-18 - q-17 + 3q-16 + 11q-15 - 3q-14 - 10q-13 + q-12 + 3q-11 + 10q-10 - 3q-9 - 9q-8 + 2q-6 + 9q-5 - 2q-4 - 6q-3 - q-2 + 5 - q2 - q3 - q4 + q5 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 132]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[15, 18, 16, 19], > X[9, 16, 10, 17], X[17, 10, 18, 11], X[13, 20, 14, 1], X[19, 14, 20, 15], > X[11, 6, 12, 7], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[10, 132]] |
Out[3]= | GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, > 7] |
In[4]:= | DTCode[Knot[10, 132]] |
Out[4]= | DTCode[4, 8, -12, 2, -16, -6, -20, -18, -10, -14] |
In[5]:= | br = BR[Knot[10, 132]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 132]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 132]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 132]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 132]][t] |
Out[10]= | -2 1 2 1 + t - - - t + t t |
In[11]:= | Conway[Knot[10, 132]][z] |
Out[11]= | 2 4 1 + 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[5, 1], Knot[10, 132]} |
In[13]:= | {KnotDet[Knot[10, 132]], KnotSignature[Knot[10, 132]]} |
Out[13]= | {5, 0} |
In[14]:= | Jones[Knot[10, 132]][q] |
Out[14]= | -7 -6 -5 -4 -2 -q + q - q + q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[5, 1], Knot[10, 132]} |
In[16]:= | A2Invariant[Knot[10, 132]][q] |
Out[16]= | -22 -20 -18 -14 -12 2 -8 -6 -q - q - q + q + q + --- + q + q 10 q |
In[17]:= | HOMFLYPT[Knot[10, 132]][a, z] |
Out[17]= | 4 6 4 2 6 2 4 4 3 a - 2 a + 4 a z - a z + a z |
In[18]:= | Kauffman[Knot[10, 132]][a, z] |
Out[18]= | 4 6 3 5 7 2 2 4 2 6 2 3 a + 2 a - a z - 4 a z - 8 a z - 5 a z - a z - 7 a z - 6 a z + 3 3 5 3 7 3 4 4 6 4 3 5 5 5 > 9 a z + 19 a z + 10 a z + 10 a z + 10 a z - 6 a z - 12 a z - 7 5 4 6 6 6 3 7 5 7 7 7 4 8 6 8 > 6 a z - 6 a z - 6 a z + a z + 2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 132]], Vassiliev[3][Knot[10, 132]]} |
Out[19]= | {3, -5} |
In[20]:= | Kh[Knot[10, 132]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 1 1 2 1 q + - + ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + --- q 15 7 11 6 11 5 9 4 7 4 9 3 5 3 5 2 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 132], 2][q] |
Out[21]= | -21 -20 -19 2 -17 -16 2 2 2 3 -10 1 + q - q - q + --- - q - q + --- - --- + --- - --- + q + 18 15 14 12 11 q q q q q 2 3 2 2 4 3 -3 3 2 > -- - -- + -- + -- - -- + -- + q - -- + - - q 9 8 7 6 5 4 2 q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10132 |
|