© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.130
10130
10.132
10132
    10.131
KnotPlot
This page is passe. Go here instead!

   The Non Alternating Knot 10131   

Visit 10131's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10131's page at Knotilus!

Acknowledgement

10.131
KnotPlot

PD Presentation: X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X6,14,7,13 X7283

Gauss Code: {-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, 4}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 16 18 -6 20 12 10

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 1 2 3 / NotAvailable 1

Alexander Polynomial: - 2t-2 + 8t-1 - 11 + 8t - 2t2

Conway Polynomial: 1 - 2z4

Other knots with the same Alexander/Conway Polynomial: {814, 98, ...}

Determinant and Signature: {31, -2}

Jones Polynomial: q-9 - 2q-8 + 3q-7 - 5q-6 + 5q-5 - 5q-4 + 5q-3 - 3q-2 + 2q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 + q-22 - 2q-20 - q-18 - q-16 - q-14 + q-12 + 2q-8 + q-6 + 2q-2

HOMFLY-PT Polynomial: 2a2 + 2a2z2 - a4z2 - a4z4 - 2a6 - 2a6z2 - a6z4 + a8 + a8z2

Kauffman Polynomial: - 2a2 + 3a2z2 + a3z + a3z3 + a3z5 + 2a4z2 - 2a4z4 + 2a4z6 - a5z + 2a5z3 - 3a5z5 + 2a5z7 + 2a6 - 3a6z2 - 2a6z4 + a6z8 - 5a7z + 10a7z3 - 12a7z5 + 4a7z7 + a8 + 2a8z2 - 4a8z4 - a8z6 + a8z8 - 3a9z + 9a9z3 - 8a9z5 + 2a9z7 + 4a10z2 - 4a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10131. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1        2
j = -3       21
j = -5      31 
j = -7     22  
j = -9    33   
j = -11   22    
j = -13  13     
j = -15 12      
j = -17 1       
j = -191        

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-26 - 2q-25 - q-24 + 6q-23 - 4q-22 - 7q-21 + 13q-20 - 2q-19 - 16q-18 + 18q-17 + 3q-16 - 23q-15 + 17q-14 + 10q-13 - 26q-12 + 12q-11 + 14q-10 - 23q-9 + 7q-8 + 11q-7 - 13q-6 + 3q-5 + 5q-4 - 4q-3 + q-2 + q-1
3 q-51 - 2q-50 - q-49 + 2q-48 + 5q-47 - 3q-46 - 9q-45 + 15q-43 + 5q-42 - 18q-41 - 15q-40 + 19q-39 + 25q-38 - 15q-37 - 33q-36 + 6q-35 + 41q-34 + q-33 - 40q-32 - 16q-31 + 43q-30 + 24q-29 - 37q-28 - 38q-27 + 35q-26 + 46q-25 - 27q-24 - 57q-23 + 22q-22 + 63q-21 - 15q-20 - 63q-19 + 4q-18 + 63q-17 - q-16 - 50q-15 - 9q-14 + 43q-13 + 6q-12 - 25q-11 - 10q-10 + 18q-9 + 3q-8 - 6q-7 - 5q-6 + 7q-5 - 2q-4 + q-3 - 2q-2 + 2q-1
4 q-84 - 2q-83 - q-82 + 2q-81 + q-80 + 6q-79 - 7q-78 - 7q-77 + 25q-74 - 3q-73 - 15q-72 - 16q-71 - 21q-70 + 46q-69 + 21q-68 + 5q-67 - 27q-66 - 73q-65 + 32q-64 + 36q-63 + 58q-62 + 8q-61 - 112q-60 - 17q-59 - 5q-58 + 95q-57 + 85q-56 - 94q-55 - 50q-54 - 89q-53 + 74q-52 + 151q-51 - 29q-50 - 38q-49 - 168q-48 + 12q-47 + 180q-46 + 44q-45 + q-44 - 222q-43 - 57q-42 + 186q-41 + 112q-40 + 39q-39 - 262q-38 - 117q-37 + 181q-36 + 172q-35 + 76q-34 - 282q-33 - 174q-32 + 154q-31 + 211q-30 + 119q-29 - 256q-28 - 207q-27 + 92q-26 + 192q-25 + 150q-24 - 170q-23 - 184q-22 + 21q-21 + 115q-20 + 132q-19 - 72q-18 - 108q-17 - 11q-16 + 34q-15 + 73q-14 - 17q-13 - 37q-12 - 5q-11 + 22q-9 - 4q-8 - 7q-7 + 2q-6 - 2q-5 + 4q-4 - q-3 - 2q-2 + q-1 + 1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 131]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], 
 
>   X[9, 16, 10, 17], X[19, 10, 20, 11], X[11, 18, 12, 19], X[17, 12, 18, 13], 
 
>   X[6, 14, 7, 13], X[7, 2, 8, 3]]
In[3]:=
GaussCode[Knot[10, 131]]
Out[3]=   
GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, 
 
>   4]
In[4]:=
DTCode[Knot[10, 131]]
Out[4]=   
DTCode[4, 8, -14, 2, 16, 18, -6, 20, 12, 10]
In[5]:=
br = BR[Knot[10, 131]]
Out[5]=   
BR[4, {-1, -1, -1, -2, 1, 1, -2, -2, -3, 2, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 131]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 131]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 131]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 1, 2, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 131]][t]
Out[10]=   
      2    8            2
-11 - -- + - + 8 t - 2 t
       2   t
      t
In[11]:=
Conway[Knot[10, 131]][z]
Out[11]=   
       4
1 - 2 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[8, 14], Knot[9, 8], Knot[10, 131]}
In[13]:=
{KnotDet[Knot[10, 131]], KnotSignature[Knot[10, 131]]}
Out[13]=   
{31, -2}
In[14]:=
Jones[Knot[10, 131]][q]
Out[14]=   
 -9   2    3    5    5    5    5    3    2
q   - -- + -- - -- + -- - -- + -- - -- + -
       8    7    6    5    4    3    2   q
      q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 131]}
In[16]:=
A2Invariant[Knot[10, 131]][q]
Out[16]=   
 -28    -22    2     -18    -16    -14    -12   2     -6   2
q    + q    - --- - q    - q    - q    + q    + -- + q   + --
               20                                8          2
              q                                 q          q
In[17]:=
HOMFLYPT[Knot[10, 131]][a, z]
Out[17]=   
   2      6    8      2  2    4  2      6  2    8  2    4  4    6  4
2 a  - 2 a  + a  + 2 a  z  - a  z  - 2 a  z  + a  z  - a  z  - a  z
In[18]:=
Kauffman[Knot[10, 131]][a, z]
Out[18]=   
    2      6    8    3      5        7        9        2  2      4  2
-2 a  + 2 a  + a  + a  z - a  z - 5 a  z - 3 a  z + 3 a  z  + 2 a  z  - 
 
       6  2      8  2      10  2    3  3      5  3       7  3      9  3
>   3 a  z  + 2 a  z  + 4 a   z  + a  z  + 2 a  z  + 10 a  z  + 9 a  z  - 
 
       4  4      6  4      8  4      10  4    3  5      5  5       7  5
>   2 a  z  - 2 a  z  - 4 a  z  - 4 a   z  + a  z  - 3 a  z  - 12 a  z  - 
 
       9  5      4  6    8  6    10  6      5  7      7  7      9  7    6  8
>   8 a  z  + 2 a  z  - a  z  + a   z  + 2 a  z  + 4 a  z  + 2 a  z  + a  z  + 
 
     8  8
>   a  z
In[19]:=
{Vassiliev[2][Knot[10, 131]], Vassiliev[3][Knot[10, 131]]}
Out[19]=   
{0, 2}
In[20]:=
Kh[Knot[10, 131]][q, t]
Out[20]=   
 -3   2     1        1        1        2        1        3        2
q   + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
      q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
          q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        3       3       2       2       3      1      2
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ----
     11  4    9  4    9  3    7  3    7  2    5  2    5      3
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
In[21]:=
ColouredJones[Knot[10, 131], 2][q]
Out[21]=   
 -26    2     -24    6     4     7    13     2    16    18     3    23    17
q    - --- - q    + --- - --- - --- + --- - --- - --- + --- + --- - --- + --- + 
        25           23    22    21    20    19    18    17    16    15    14
       q            q     q     q     q     q     q     q     q     q     q
 
    10    26    12    14    23   7    11   13   3    5    4     -2   1
>   --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- + q   + -
     13    12    11    10    9    8    7    6    5    4    3         q
    q     q     q     q     q    q    q    q    q    q    q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10131
10.130
10130
10.132
10132