© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10131Visit 10131's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10131's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X6,14,7,13 X7283 |
Gauss Code: | {-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -14 2 16 18 -6 20 12 10 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 8t-1 - 11 + 8t - 2t2 |
Conway Polynomial: | 1 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {814, 98, ...} |
Determinant and Signature: | {31, -2} |
Jones Polynomial: | q-9 - 2q-8 + 3q-7 - 5q-6 + 5q-5 - 5q-4 + 5q-3 - 3q-2 + 2q-1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-28 + q-22 - 2q-20 - q-18 - q-16 - q-14 + q-12 + 2q-8 + q-6 + 2q-2 |
HOMFLY-PT Polynomial: | 2a2 + 2a2z2 - a4z2 - a4z4 - 2a6 - 2a6z2 - a6z4 + a8 + a8z2 |
Kauffman Polynomial: | - 2a2 + 3a2z2 + a3z + a3z3 + a3z5 + 2a4z2 - 2a4z4 + 2a4z6 - a5z + 2a5z3 - 3a5z5 + 2a5z7 + 2a6 - 3a6z2 - 2a6z4 + a6z8 - 5a7z + 10a7z3 - 12a7z5 + 4a7z7 + a8 + 2a8z2 - 4a8z4 - a8z6 + a8z8 - 3a9z + 9a9z3 - 8a9z5 + 2a9z7 + 4a10z2 - 4a10z4 + a10z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10131. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-26 - 2q-25 - q-24 + 6q-23 - 4q-22 - 7q-21 + 13q-20 - 2q-19 - 16q-18 + 18q-17 + 3q-16 - 23q-15 + 17q-14 + 10q-13 - 26q-12 + 12q-11 + 14q-10 - 23q-9 + 7q-8 + 11q-7 - 13q-6 + 3q-5 + 5q-4 - 4q-3 + q-2 + q-1 |
3 | q-51 - 2q-50 - q-49 + 2q-48 + 5q-47 - 3q-46 - 9q-45 + 15q-43 + 5q-42 - 18q-41 - 15q-40 + 19q-39 + 25q-38 - 15q-37 - 33q-36 + 6q-35 + 41q-34 + q-33 - 40q-32 - 16q-31 + 43q-30 + 24q-29 - 37q-28 - 38q-27 + 35q-26 + 46q-25 - 27q-24 - 57q-23 + 22q-22 + 63q-21 - 15q-20 - 63q-19 + 4q-18 + 63q-17 - q-16 - 50q-15 - 9q-14 + 43q-13 + 6q-12 - 25q-11 - 10q-10 + 18q-9 + 3q-8 - 6q-7 - 5q-6 + 7q-5 - 2q-4 + q-3 - 2q-2 + 2q-1 |
4 | q-84 - 2q-83 - q-82 + 2q-81 + q-80 + 6q-79 - 7q-78 - 7q-77 + 25q-74 - 3q-73 - 15q-72 - 16q-71 - 21q-70 + 46q-69 + 21q-68 + 5q-67 - 27q-66 - 73q-65 + 32q-64 + 36q-63 + 58q-62 + 8q-61 - 112q-60 - 17q-59 - 5q-58 + 95q-57 + 85q-56 - 94q-55 - 50q-54 - 89q-53 + 74q-52 + 151q-51 - 29q-50 - 38q-49 - 168q-48 + 12q-47 + 180q-46 + 44q-45 + q-44 - 222q-43 - 57q-42 + 186q-41 + 112q-40 + 39q-39 - 262q-38 - 117q-37 + 181q-36 + 172q-35 + 76q-34 - 282q-33 - 174q-32 + 154q-31 + 211q-30 + 119q-29 - 256q-28 - 207q-27 + 92q-26 + 192q-25 + 150q-24 - 170q-23 - 184q-22 + 21q-21 + 115q-20 + 132q-19 - 72q-18 - 108q-17 - 11q-16 + 34q-15 + 73q-14 - 17q-13 - 37q-12 - 5q-11 + 22q-9 - 4q-8 - 7q-7 + 2q-6 - 2q-5 + 4q-4 - q-3 - 2q-2 + q-1 + 1 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 131]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], > X[9, 16, 10, 17], X[19, 10, 20, 11], X[11, 18, 12, 19], X[17, 12, 18, 13], > X[6, 14, 7, 13], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 131]] |
Out[3]= | GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, > 4] |
In[4]:= | DTCode[Knot[10, 131]] |
Out[4]= | DTCode[4, 8, -14, 2, 16, 18, -6, 20, 12, 10] |
In[5]:= | br = BR[Knot[10, 131]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, 1, -2, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 131]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 131]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 131]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 131]][t] |
Out[10]= | 2 8 2 -11 - -- + - + 8 t - 2 t 2 t t |
In[11]:= | Conway[Knot[10, 131]][z] |
Out[11]= | 4 1 - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 14], Knot[9, 8], Knot[10, 131]} |
In[13]:= | {KnotDet[Knot[10, 131]], KnotSignature[Knot[10, 131]]} |
Out[13]= | {31, -2} |
In[14]:= | Jones[Knot[10, 131]][q] |
Out[14]= | -9 2 3 5 5 5 5 3 2 q - -- + -- - -- + -- - -- + -- - -- + - 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 131]} |
In[16]:= | A2Invariant[Knot[10, 131]][q] |
Out[16]= | -28 -22 2 -18 -16 -14 -12 2 -6 2 q + q - --- - q - q - q + q + -- + q + -- 20 8 2 q q q |
In[17]:= | HOMFLYPT[Knot[10, 131]][a, z] |
Out[17]= | 2 6 8 2 2 4 2 6 2 8 2 4 4 6 4 2 a - 2 a + a + 2 a z - a z - 2 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 131]][a, z] |
Out[18]= | 2 6 8 3 5 7 9 2 2 4 2 -2 a + 2 a + a + a z - a z - 5 a z - 3 a z + 3 a z + 2 a z - 6 2 8 2 10 2 3 3 5 3 7 3 9 3 > 3 a z + 2 a z + 4 a z + a z + 2 a z + 10 a z + 9 a z - 4 4 6 4 8 4 10 4 3 5 5 5 7 5 > 2 a z - 2 a z - 4 a z - 4 a z + a z - 3 a z - 12 a z - 9 5 4 6 8 6 10 6 5 7 7 7 9 7 6 8 > 8 a z + 2 a z - a z + a z + 2 a z + 4 a z + 2 a z + a z + 8 8 > a z |
In[19]:= | {Vassiliev[2][Knot[10, 131]], Vassiliev[3][Knot[10, 131]]} |
Out[19]= | {0, 2} |
In[20]:= | Kh[Knot[10, 131]][q, t] |
Out[20]= | -3 2 1 1 1 2 1 3 2 q + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 q t q t q t q t q t q t q t 2 3 3 2 2 3 1 2 > ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- 11 4 9 4 9 3 7 3 7 2 5 2 5 3 q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 131], 2][q] |
Out[21]= | -26 2 -24 6 4 7 13 2 16 18 3 23 17 q - --- - q + --- - --- - --- + --- - --- - --- + --- + --- - --- + --- + 25 23 22 21 20 19 18 17 16 15 14 q q q q q q q q q q q 10 26 12 14 23 7 11 13 3 5 4 -2 1 > --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- + q + - 13 12 11 10 9 8 7 6 5 4 3 q q q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10131 |
|