© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10133Visit 10133's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10133's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X14,9,15,10 X5,13,6,12 X13,7,14,6 X18,11,19,12 X20,15,1,16 X16,19,17,20 X10,17,11,18 X7283 |
Gauss Code: | {-1, 10, -2, 1, -4, 5, -10, 2, 3, -9, 6, 4, -5, -3, 7, -8, 9, -6, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 -14 -18 6 -20 -10 -16 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-2 + 5t-1 - 7 + 5t - t2 |
Conway Polynomial: | 1 + z2 - z4 |
Other knots with the same Alexander/Conway Polynomial: | {76, ...} |
Determinant and Signature: | {19, -2} |
Jones Polynomial: | q-9 - 2q-8 + 2q-7 - 3q-6 + 3q-5 - 3q-4 + 3q-3 - q-2 + q-1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n27, ...} |
A2 (sl(3)) Invariant: | q-28 - 2q-20 - q-18 - q-16 + q-12 + q-10 + 2q-8 + q-6 + q-2 |
HOMFLY-PT Polynomial: | a2 + a2z2 + 2a4 + 2a4z2 - 3a6 - 3a6z2 - a6z4 + a8 + a8z2 |
Kauffman Polynomial: | - a2 + a2z2 + a3z3 + 2a4 - 3a4z2 + 2a4z4 - 4a5z + 7a5z3 - 4a5z5 + a5z7 + 3a6 - 6a6z2 + 6a6z4 - 4a6z6 + a6z8 - 7a7z + 16a7z3 - 13a7z5 + 3a7z7 + a8 + a8z2 - 3a8z6 + a8z8 - 3a9z + 10a9z3 - 9a9z5 + 2a9z7 + 3a10z2 - 4a10z4 + a10z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10133. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-26 - 2q-25 - q-24 + 5q-23 - 3q-22 - 4q-21 + 7q-20 - q-19 - 6q-18 + 6q-17 + q-16 - 6q-15 + 3q-14 + 3q-13 - 5q-12 + 4q-10 - 3q-9 - q-8 + 2q-7 + q-2 |
3 | q-51 - 2q-50 - q-49 + 2q-48 + 4q-47 - 2q-46 - 7q-45 + q-44 + 8q-43 + 2q-42 - 8q-41 - 4q-40 + 6q-39 + 5q-38 - 4q-37 - 3q-36 + q-34 + 5q-32 - 2q-31 - 8q-30 + q-29 + 14q-28 - 2q-27 - 16q-26 + q-25 + 20q-24 - 2q-23 - 23q-22 + 2q-21 + 24q-20 - 26q-18 + 21q-16 + 7q-15 - 22q-14 - 5q-13 + 12q-12 + 9q-11 - 9q-10 - 5q-9 + 2q-8 + 6q-7 - 2q-6 - q-5 - q-4 + 2q-3 |
4 | q-84 - 2q-83 - q-82 + 2q-81 + q-80 + 5q-79 - 6q-78 - 5q-77 + 16q-74 - 4q-73 - 7q-72 - 5q-71 - 9q-70 + 19q-69 - 15q-65 + 12q-64 - 7q-63 - q-62 + 12q-61 - 3q-60 + 14q-59 - 19q-58 - 21q-57 + 12q-56 + 14q-55 + 33q-54 - 18q-53 - 47q-52 - 5q-51 + 21q-50 + 57q-49 - 2q-48 - 64q-47 - 26q-46 + 17q-45 + 73q-44 + 19q-43 - 73q-42 - 43q-41 + 12q-40 + 82q-39 + 34q-38 - 79q-37 - 54q-36 + 10q-35 + 88q-34 + 45q-33 - 83q-32 - 63q-31 + 5q-30 + 87q-29 + 55q-28 - 70q-27 - 65q-26 - 11q-25 + 69q-24 + 58q-23 - 40q-22 - 48q-21 - 22q-20 + 35q-19 + 40q-18 - 12q-17 - 19q-16 - 18q-15 + 10q-14 + 16q-13 - 2q-12 - 3q-11 - 7q-10 + 3q-9 + 4q-8 - q-7 - 2q-5 + q-4 + q-3 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 133]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 9, 15, 10], X[5, 13, 6, 12], > X[13, 7, 14, 6], X[18, 11, 19, 12], X[20, 15, 1, 16], X[16, 19, 17, 20], > X[10, 17, 11, 18], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 133]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, 3, -9, 6, 4, -5, -3, 7, -8, 9, -6, 8, > -7] |
In[4]:= | DTCode[Knot[10, 133]] |
Out[4]= | DTCode[4, 8, 12, 2, -14, -18, 6, -20, -10, -16] |
In[5]:= | br = BR[Knot[10, 133]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, 1, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 133]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 133]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 133]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 133]][t] |
Out[10]= | -2 5 2 -7 - t + - + 5 t - t t |
In[11]:= | Conway[Knot[10, 133]][z] |
Out[11]= | 2 4 1 + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 6], Knot[10, 133]} |
In[13]:= | {KnotDet[Knot[10, 133]], KnotSignature[Knot[10, 133]]} |
Out[13]= | {19, -2} |
In[14]:= | Jones[Knot[10, 133]][q] |
Out[14]= | -9 2 2 3 3 3 3 -2 1 q - -- + -- - -- + -- - -- + -- - q + - 8 7 6 5 4 3 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 133], Knot[11, NonAlternating, 27]} |
In[16]:= | A2Invariant[Knot[10, 133]][q] |
Out[16]= | -28 2 -18 -16 -12 -10 2 -6 -2 q - --- - q - q + q + q + -- + q + q 20 8 q q |
In[17]:= | HOMFLYPT[Knot[10, 133]][a, z] |
Out[17]= | 2 4 6 8 2 2 4 2 6 2 8 2 6 4 a + 2 a - 3 a + a + a z + 2 a z - 3 a z + a z - a z |
In[18]:= | Kauffman[Knot[10, 133]][a, z] |
Out[18]= | 2 4 6 8 5 7 9 2 2 4 2 6 2 -a + 2 a + 3 a + a - 4 a z - 7 a z - 3 a z + a z - 3 a z - 6 a z + 8 2 10 2 3 3 5 3 7 3 9 3 4 4 > a z + 3 a z + a z + 7 a z + 16 a z + 10 a z + 2 a z + 6 4 10 4 5 5 7 5 9 5 6 6 8 6 > 6 a z - 4 a z - 4 a z - 13 a z - 9 a z - 4 a z - 3 a z + 10 6 5 7 7 7 9 7 6 8 8 8 > a z + a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 133]], Vassiliev[3][Knot[10, 133]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 133]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 2 1 q + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 q t q t q t q t q t q t q t 1 2 2 1 1 2 1 > ------ + ----- + ----- + ----- + ----- + ----- + ---- 11 4 9 4 9 3 7 3 7 2 5 2 3 q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 133], 2][q] |
Out[21]= | -26 2 -24 5 3 4 7 -19 6 6 -16 6 q - --- - q + --- - --- - --- + --- - q - --- + --- + q - --- + 25 23 22 21 20 18 17 15 q q q q q q q q 3 3 5 4 3 -8 2 -2 > --- + --- - --- + --- - -- - q + -- + q 14 13 12 10 9 7 q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10133 |
|