© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.133
10133
10.135
10135
    10.134
KnotPlot
This page is passe. Go here instead!

   The Non Alternating Knot 10134   

Visit 10134's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10134's page at Knotilus!

Acknowledgement

10.134
KnotPlot

PD Presentation: X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X2837

Gauss Code: {1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7}

DT (Dowker-Thistlethwaite) Code: 4 8 -12 2 -14 -18 -6 -20 -10 -16

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 3 3 3 / NotAvailable 1

Alexander Polynomial: 2t-3 - 4t-2 + 4t-1 - 3 + 4t - 4t2 + 2t3

Conway Polynomial: 1 + 6z2 + 8z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {23, 6}

Jones Polynomial: q3 - q4 + 3q5 - 3q6 + 4q7 - 4q8 + 3q9 - 3q10 + q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 + 2q14 + q16 + 2q18 + q20 + q24 - 2q26 - q28 - 2q30 - q32 + q38

HOMFLY-PT Polynomial: a-12 - 3a-10 - 4a-10z2 - a-10z4 + 3a-8z2 + 4a-8z4 + a-8z6 + 3a-6 + 7a-6z2 + 5a-6z4 + a-6z6

Kauffman Polynomial: a-14z2 - 2a-13z + 3a-13z3 + a-12 + a-12z2 - a-12z4 + a-12z6 - 8a-11z + 14a-11z3 - 8a-11z5 + 2a-11z7 + 3a-10 - 7a-10z2 + 5a-10z4 - 3a-10z6 + a-10z8 - 4a-9z + 11a-9z3 - 11a-9z5 + 3a-9z7 + a-8z4 - 3a-8z6 + a-8z8 + 2a-7z - 3a-7z5 + a-7z7 - 3a-6 + 7a-6z2 - 5a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {6, 13}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 10134. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 23        1
j = 21       2 
j = 19      11 
j = 17     32  
j = 15    11   
j = 13   23    
j = 11  11     
j = 9  2      
j = 711       
j = 51        

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q6 - q7 + 4q9 - 3q10 - 3q11 + 9q12 - 3q13 - 8q14 + 10q15 - 12q17 + 9q18 + 4q19 - 13q20 + 6q21 + 7q22 - 11q23 + 3q24 + 6q25 - 6q26 + q27 + 2q28 - q29
3 q9 - q10 + q12 + 3q13 - 3q14 - 3q15 + 2q16 + 9q17 - 3q18 - 9q19 - 3q20 + 15q21 + 3q22 - 10q23 - 12q24 + 10q25 + 10q26 - q27 - 15q28 - 2q29 + 9q30 + 11q31 - 10q32 - 13q33 + 3q34 + 21q35 - q36 - 24q37 - 2q38 + 27q39 + 6q40 - 30q41 - 7q42 + 27q43 + 13q44 - 27q45 - 11q46 + 17q47 + 15q48 - 13q49 - 10q50 + 3q51 + 10q52 - q53 - 5q54 - q55 + q56 + 2q57 - q58
4 q12 - q13 + q15 + 3q17 - 4q18 - 2q19 + 3q20 + q21 + 10q22 - 8q23 - 9q24 + 24q27 - 4q28 - 12q29 - 9q30 - 16q31 + 31q32 + 5q33 + 2q34 - 4q35 - 35q36 + 16q37 - 4q38 + 18q39 + 26q40 - 31q41 - 2q42 - 36q43 + 8q44 + 58q45 + 2q46 + q47 - 71q48 - 27q49 + 71q50 + 41q51 + 22q52 - 93q53 - 66q54 + 70q55 + 72q56 + 42q57 - 105q58 - 95q59 + 67q60 + 95q61 + 54q62 - 110q63 - 116q64 + 60q65 + 111q66 + 65q67 - 104q68 - 126q69 + 39q70 + 105q71 + 77q72 - 71q73 - 117q74 + 6q75 + 70q76 + 74q77 - 24q78 - 78q79 - 15q80 + 23q81 + 47q82 + 6q83 - 32q84 - 12q85 - q86 + 15q87 + 8q88 - 6q89 - 3q90 - 3q91 + 2q92 + 2q93 - q94
5 q15 - q16 + q18 + 2q21 - 3q22 - 2q23 + 3q24 + 3q25 + q26 + 4q27 - 7q28 - 9q29 - q30 + 8q31 + 9q32 + 13q33 - 5q34 - 18q35 - 16q36 - 3q37 + 10q38 + 28q39 + 14q40 - 6q41 - 19q42 - 24q43 - 19q44 + 15q45 + 21q46 + 21q47 + 18q48 - 2q49 - 35q50 - 31q51 - 25q52 + q53 + 49q54 + 67q55 + 24q56 - 31q57 - 87q58 - 88q59 + q60 + 102q61 + 128q62 + 61q63 - 81q64 - 180q65 - 120q66 + 49q67 + 192q68 + 191q69 + 11q70 - 210q71 - 240q72 - 66q73 + 186q74 + 293q75 + 130q76 - 176q77 - 322q78 - 179q79 + 145q80 + 350q81 + 228q82 - 130q83 - 368q84 - 261q85 + 112q86 + 385q87 + 291q88 - 100q89 - 404q90 - 314q91 + 94q92 + 414q93 + 335q94 - 76q95 - 424q96 - 360q97 + 60q98 + 414q99 + 375q100 - 17q101 - 397q102 - 387q103 - 17q104 + 342q105 + 378q106 + 74q107 - 284q108 - 349q109 - 99q110 + 196q111 + 288q112 + 133q113 - 123q114 - 225q115 - 117q116 + 53q117 + 144q118 + 105q119 - 12q120 - 86q121 - 70q122 - 7q123 + 39q124 + 40q125 + 12q126 - 13q127 - 22q128 - 7q129 + 6q130 + 5q131 + 4q132 - 3q134 - q135 + q136
6 q18 - q19 + q21 - q24 + 3q25 - 3q26 - 2q27 + 4q28 + 2q29 + 2q30 - 4q31 + 5q32 - 8q33 - 9q34 + 5q35 + 7q36 + 12q37 - 2q38 + 13q39 - 16q40 - 25q41 - 7q42 + 22q44 + 7q45 + 42q46 - 3q47 - 27q48 - 26q49 - 30q50 - 2q51 - 15q52 + 62q53 + 28q54 + 19q55 + 6q56 - 23q57 - 27q58 - 84q59 + 8q60 - 13q61 + 33q62 + 65q63 + 73q64 + 62q65 - 70q66 - 46q67 - 134q68 - 96q69 - 18q70 + 110q71 + 214q72 + 111q73 + 89q74 - 128q75 - 247q76 - 272q77 - 94q78 + 181q79 + 266q80 + 377q81 + 153q82 - 157q83 - 452q84 - 439q85 - 132q86 + 147q87 + 545q88 + 547q89 + 213q90 - 339q91 - 646q92 - 533q93 - 237q94 + 427q95 + 798q96 + 656q97 + 13q98 - 595q99 - 802q100 - 681q101 + 108q102 + 832q103 + 985q104 + 411q105 - 386q106 - 898q107 - 1029q108 - 234q109 + 749q110 + 1173q111 + 720q112 - 176q113 - 909q114 - 1247q115 - 485q116 + 670q117 + 1280q118 + 912q119 - 49q120 - 923q121 - 1379q122 - 627q123 + 647q124 + 1365q125 + 1032q126 + 11q127 - 962q128 - 1483q129 - 729q130 + 630q131 + 1437q132 + 1157q133 + 105q134 - 955q135 - 1568q136 - 881q137 + 497q138 + 1408q139 + 1279q140 + 320q141 - 763q142 - 1516q143 - 1046q144 + 177q145 + 1131q146 + 1238q147 + 570q148 - 351q149 - 1173q150 - 1024q151 - 183q152 + 618q153 + 896q154 + 622q155 + 67q156 - 618q157 - 706q158 - 324q159 + 146q160 + 406q161 + 406q162 + 224q163 - 171q164 - 296q165 - 211q166 - 45q167 + 75q168 + 138q169 + 144q170 - 3q171 - 58q172 - 61q173 - 32q174 - 15q175 + 13q176 + 41q177 + 5q178 + q179 - 4q180 - q181 - 9q182 - 5q183 + 7q184 - 2q185 + q186 + q187 + 2q188 - q189 - 2q190 + q191


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 134]]
Out[2]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 15, 10, 14], X[5, 13, 6, 12], 
 
>   X[13, 7, 14, 6], X[11, 19, 12, 18], X[15, 1, 16, 20], X[19, 17, 20, 16], 
 
>   X[17, 11, 18, 10], X[2, 8, 3, 7]]
In[3]:=
GaussCode[Knot[10, 134]]
Out[3]=   
GaussCode[1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 
 
>   7]
In[4]:=
DTCode[Knot[10, 134]]
Out[4]=   
DTCode[4, 8, -12, 2, -14, -18, -6, -20, -10, -16]
In[5]:=
br = BR[Knot[10, 134]]
Out[5]=   
BR[4, {1, 1, 1, 2, 1, 1, 2, 3, -2, 3, 3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 134]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 134]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 134]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 3, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 134]][t]
Out[10]=   
     2    4    4            2      3
-3 + -- - -- + - + 4 t - 4 t  + 2 t
      3    2   t
     t    t
In[11]:=
Conway[Knot[10, 134]][z]
Out[11]=   
       2      4      6
1 + 6 z  + 8 z  + 2 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 134]}
In[13]:=
{KnotDet[Knot[10, 134]], KnotSignature[Knot[10, 134]]}
Out[13]=   
{23, 6}
In[14]:=
Jones[Knot[10, 134]][q]
Out[14]=   
 3    4      5      6      7      8      9      10    11
q  - q  + 3 q  - 3 q  + 4 q  - 4 q  + 3 q  - 3 q   + q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 134]}
In[16]:=
A2Invariant[Knot[10, 134]][q]
Out[16]=   
 10      14    16      18    20    24      26    28      30    32    38
q   + 2 q   + q   + 2 q   + q   + q   - 2 q   - q   - 2 q   - q   + q
In[17]:=
HOMFLYPT[Knot[10, 134]][a, z]
Out[17]=   
                     2      2      2    4       4      4    6    6
 -12    3    3    4 z    3 z    7 z    z     4 z    5 z    z    z
a    - --- + -- - ---- + ---- + ---- - --- + ---- + ---- + -- + --
        10    6    10      8      6     10     8      6     8    6
       a     a    a       a      a     a      a      a     a    a
In[18]:=
Kauffman[Knot[10, 134]][a, z]
Out[18]=   
                                           2     2       2      2      3
 -12    3    3    2 z   8 z   4 z   2 z   z     z     7 z    7 z    3 z
a    + --- - -- - --- - --- - --- + --- + --- + --- - ---- + ---- + ---- + 
        10    6    13    11    9     7     14    12    10      6     13
       a     a    a     a     a     a     a     a     a       a     a
 
        3       3    4       4    4      4      5       5      5    6       6
    14 z    11 z    z     5 z    z    5 z    8 z    11 z    3 z    z     3 z
>   ----- + ----- - --- + ---- + -- - ---- - ---- - ----- - ---- + --- - ---- - 
      11      9      12    10     8     6     11      9       7     12    10
     a       a      a     a      a     a     a       a       a     a     a
 
       6    6      7      7    7    8     8
    3 z    z    2 z    3 z    z    z     z
>   ---- + -- + ---- + ---- + -- + --- + --
      8     6    11      9     7    10    8
     a     a    a       a     a    a     a
In[19]:=
{Vassiliev[2][Knot[10, 134]], Vassiliev[3][Knot[10, 134]]}
Out[19]=   
{6, 13}
In[20]:=
Kh[Knot[10, 134]][q, t]
Out[20]=   
 5    7    7        9  2    11  2    11  3      13  3      13  4    15  4
q  + q  + q  t + 2 q  t  + q   t  + q   t  + 2 q   t  + 3 q   t  + q   t  + 
 
     15  5      17  5      17  6    19  6    19  7      21  7    23  8
>   q   t  + 3 q   t  + 2 q   t  + q   t  + q   t  + 2 q   t  + q   t
In[21]:=
ColouredJones[Knot[10, 134], 2][q]
Out[21]=   
 6    7      9      10      11      12      13      14       15       17
q  - q  + 4 q  - 3 q   - 3 q   + 9 q   - 3 q   - 8 q   + 10 q   - 12 q   + 
 
       18      19       20      21      22       23      24      25      26
>   9 q   + 4 q   - 13 q   + 6 q   + 7 q   - 11 q   + 3 q   + 6 q   - 6 q   + 
 
     27      28    29
>   q   + 2 q   - q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10134
10.133
10133
10.135
10135