© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10135Visit 10135's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10135's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X9,15,10,14 X12,5,13,6 X6,13,7,14 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X7283 |
Gauss Code: | {-1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -12 2 14 18 -6 20 10 16 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 9t-1 + 13 - 9t + 3t2 |
Conway Polynomial: | 1 + 3z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {1034, ...} |
Determinant and Signature: | {37, 0} |
Jones Polynomial: | - q-5 + 2q-4 - 4q-3 + 6q-2 - 6q-1 + 7 - 5q + 4q2 - 2q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 - 2q-10 + q-8 + q-4 + 3q-2 + 1 + 3q2 - q4 - 2q10 |
HOMFLY-PT Polynomial: | - 2a-2 - 2a-2z2 + 4 + 5z2 + 2z4 + a2z2 + a2z4 - a4 - a4z2 |
Kauffman Polynomial: | - 3a-3z + 3a-3z3 + 2a-2 - 4a-2z2 + 2a-2z4 + a-2z6 - 6a-1z + 9a-1z3 - 4a-1z5 + 2a-1z7 + 4 - 6z2 + 3z4 + z8 - 4az + 8az3 - 8az5 + 4az7 + a2z2 - 4a2z4 + a2z6 + a2z8 + a3z - a3z3 - 3a3z5 + 2a3z7 - a4 + 3a4z2 - 5a4z4 + 2a4z6 + 2a5z - 3a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10135. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 2q-14 + 6q-12 - 8q-11 - 4q-10 + 19q-9 - 14q-8 - 16q-7 + 35q-6 - 13q-5 - 30q-4 + 44q-3 - 7q-2 - 38q-1 + 42 - q - 34q2 + 28q3 + 4q4 - 21q5 + 11q6 + 4q7 - 7q8 + q9 + q10 |
3 | - q-30 + 2q-29 - 2q-27 - 3q-26 + 7q-25 + 5q-24 - 10q-23 - 14q-22 + 16q-21 + 25q-20 - 14q-19 - 46q-18 + 11q-17 + 64q-16 + 5q-15 - 85q-14 - 29q-13 + 102q-12 + 53q-11 - 107q-10 - 86q-9 + 114q-8 + 108q-7 - 106q-6 - 135q-5 + 107q-4 + 142q-3 - 87q-2 - 158q-1 + 82 + 149q - 55q2 - 148q3 + 42q4 + 125q5 - 15q6 - 106q7 + 77q9 + 12q10 - 51q11 - 16q12 + 28q13 + 13q14 - 10q15 - 12q16 + 6q17 + 2q18 + 2q19 - 2q20 |
4 | q-50 - 2q-49 + 2q-47 - q-46 + 4q-45 - 9q-44 - q-43 + 10q-42 + 14q-40 - 30q-39 - 16q-38 + 22q-37 + 15q-36 + 56q-35 - 58q-34 - 66q-33 - 3q-32 + 28q-31 + 168q-30 - 35q-29 - 130q-28 - 114q-27 - 37q-26 + 318q-25 + 97q-24 - 113q-23 - 277q-22 - 237q-21 + 401q-20 + 298q-19 + 36q-18 - 389q-17 - 508q-16 + 362q-15 + 466q-14 + 257q-13 - 410q-12 - 740q-11 + 254q-10 + 552q-9 + 450q-8 - 371q-7 - 875q-6 + 133q-5 + 566q-4 + 577q-3 - 296q-2 - 909q-1 + 12 + 508q + 631q2 - 173q3 - 827q4 - 115q5 + 361q6 + 598q7 - 11q8 - 622q9 - 200q10 + 152q11 + 453q12 + 119q13 - 343q14 - 188q15 - 19q16 + 241q17 + 140q18 - 112q19 - 97q20 - 70q21 + 70q22 + 77q23 - 8q24 - 21q25 - 37q26 + 4q27 + 18q28 + 5q29 + 2q30 - 6q31 - 3q32 + q33 + q34 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 135]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[12, 5, 13, 6], > X[6, 13, 7, 14], X[11, 19, 12, 18], X[15, 1, 16, 20], X[19, 17, 20, 16], > X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 135]] |
Out[3]= | GaussCode[-1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, > 7] |
In[4]:= | DTCode[Knot[10, 135]] |
Out[4]= | DTCode[4, 8, -12, 2, 14, 18, -6, 20, 10, 16] |
In[5]:= | br = BR[Knot[10, 135]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, -2, -2, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 135]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 135]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 135]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 135]][t] |
Out[10]= | 3 9 2 13 + -- - - - 9 t + 3 t 2 t t |
In[11]:= | Conway[Knot[10, 135]][z] |
Out[11]= | 2 4 1 + 3 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 34], Knot[10, 135]} |
In[13]:= | {KnotDet[Knot[10, 135]], KnotSignature[Knot[10, 135]]} |
Out[13]= | {37, 0} |
In[14]:= | Jones[Knot[10, 135]][q] |
Out[14]= | -5 2 4 6 6 2 3 7 - q + -- - -- + -- - - - 5 q + 4 q - 2 q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 135]} |
In[16]:= | A2Invariant[Knot[10, 135]][q] |
Out[16]= | -16 2 -8 -4 3 2 4 10 1 - q - --- + q + q + -- + 3 q - q - 2 q 10 2 q q |
In[17]:= | HOMFLYPT[Knot[10, 135]][a, z] |
Out[17]= | 2 2 4 2 2 z 2 2 4 2 4 2 4 4 - -- - a + 5 z - ---- + a z - a z + 2 z + a z 2 2 a a |
In[18]:= | Kauffman[Knot[10, 135]][a, z] |
Out[18]= | 2 2 4 3 z 6 z 3 5 2 4 z 2 2 4 + -- - a - --- - --- - 4 a z + a z + 2 a z - 6 z - ---- + a z + 2 3 a 2 a a a 3 3 4 4 2 3 z 9 z 3 3 3 5 3 4 2 z 2 4 > 3 a z + ---- + ---- + 8 a z - a z - 3 a z + 3 z + ---- - 4 a z - 3 a 2 a a 5 6 7 4 4 4 z 5 3 5 5 5 z 2 6 4 6 2 z > 5 a z - ---- - 8 a z - 3 a z + a z + -- + a z + 2 a z + ---- + a 2 a a 7 3 7 8 2 8 > 4 a z + 2 a z + z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 135]], Vassiliev[3][Knot[10, 135]]} |
Out[19]= | {3, -1} |
In[20]:= | Kh[Knot[10, 135]][q, t] |
Out[20]= | 4 1 1 1 3 1 3 3 3 3 - + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 7 3 > 2 q t + 3 q t + 2 q t + 2 q t + 2 q t |
In[21]:= | ColouredJones[Knot[10, 135], 2][q] |
Out[21]= | -15 2 6 8 4 19 14 16 35 13 30 44 7 42 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - -- - 14 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 38 2 3 4 5 6 7 8 9 10 > -- - q - 34 q + 28 q + 4 q - 21 q + 11 q + 4 q - 7 q + q + q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10135 |
|