© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 817Visit 817's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 817's page at Knotilus! |
![]() KnotPlot |
Further views: |
![]() A knot in Brian Sanderson's Garden |
PD Presentation: | X6271 X14,8,15,7 X8394 X2,13,3,14 X12,5,13,6 X4,9,5,10 X16,12,1,11 X10,16,11,15 |
Gauss Code: | {1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 8 12 14 4 16 2 10 |
Minimum Braid Representative:
Length is 8, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 4t-2 - 8t-1 + 11 - 8t + 4t2 - t3 |
Conway Polynomial: | 1 - z2 - 2z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n53, ...} |
Determinant and Signature: | {37, 0} |
Jones Polynomial: | q-4 - 3q-3 + 5q-2 - 6q-1 + 7 - 6q + 5q2 - 3q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-12 - q-10 + q-8 - q-4 + 2q-2 - 1 + 2q2 - q4 + q8 - q10 + q12 |
HOMFLY-PT Polynomial: | a-2 + 2a-2z2 + a-2z4 - 1 - 5z2 - 4z4 - z6 + a2 + 2a2z2 + a2z4 |
Kauffman Polynomial: | - a-4z2 + a-4z4 + a-3z - 4a-3z3 + 3a-3z5 - a-2 + 3a-2z2 - 6a-2z4 + 4a-2z6 + 2a-1z - 6a-1z3 + 2a-1z5 + 2a-1z7 - 1 + 8z2 - 14z4 + 8z6 + 2az - 6az3 + 2az5 + 2az7 - a2 + 3a2z2 - 6a2z4 + 4a2z6 + a3z - 4a3z3 + 3a3z5 - a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 817. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 3q-11 + q-10 + 9q-9 - 14q-8 - 3q-7 + 28q-6 - 25q-5 - 14q-4 + 47q-3 - 29q-2 - 25q-1 + 55 - 25q - 29q2 + 47q3 - 14q4 - 25q5 + 28q6 - 3q7 - 14q8 + 9q9 + q10 - 3q11 + q12 |
3 | q-24 - 3q-23 + q-22 + 5q-21 + q-20 - 14q-19 - 6q-18 + 29q-17 + 17q-16 - 43q-15 - 40q-14 + 55q-13 + 73q-12 - 64q-11 - 108q-10 + 61q-9 + 146q-8 - 53q-7 - 177q-6 + 38q-5 + 205q-4 - 26q-3 - 216q-2 + 6q-1 + 225 + 6q - 216q2 - 26q3 + 205q4 + 38q5 - 177q6 - 53q7 + 146q8 + 61q9 - 108q10 - 64q11 + 73q12 + 55q13 - 40q14 - 43q15 + 17q16 + 29q17 - 6q18 - 14q19 + q20 + 5q21 + q22 - 3q23 + q24 |
4 | q-40 - 3q-39 + q-38 + 5q-37 - 3q-36 + q-35 - 17q-34 + 6q-33 + 31q-32 + q-31 - 82q-29 - 16q-28 + 96q-27 + 69q-26 + 52q-25 - 216q-24 - 146q-23 + 120q-22 + 216q-21 + 260q-20 - 323q-19 - 393q-18 - 7q-17 + 340q-16 + 605q-15 - 292q-14 - 631q-13 - 265q-12 + 347q-11 + 945q-10 - 149q-9 - 759q-8 - 522q-7 + 261q-6 + 1161q-5 + 11q-4 - 771q-3 - 694q-2 + 144q-1 + 1233 + 144q - 694q2 - 771q3 + 11q4 + 1161q5 + 261q6 - 522q7 - 759q8 - 149q9 + 945q10 + 347q11 - 265q12 - 631q13 - 292q14 + 605q15 + 340q16 - 7q17 - 393q18 - 323q19 + 260q20 + 216q21 + 120q22 - 146q23 - 216q24 + 52q25 + 69q26 + 96q27 - 16q28 - 82q29 + q31 + 31q32 + 6q33 - 17q34 + q35 - 3q36 + 5q37 + q38 - 3q39 + q40 |
5 | q-60 - 3q-59 + q-58 + 5q-57 - 3q-56 - 3q-55 - 2q-54 - 5q-53 + 8q-52 + 26q-51 + 4q-50 - 30q-49 - 43q-48 - 34q-47 + 35q-46 + 112q-45 + 107q-44 - 31q-43 - 197q-42 - 237q-41 - 60q-40 + 270q-39 + 462q-38 + 264q-37 - 285q-36 - 728q-35 - 603q-34 + 141q-33 + 976q-32 + 1094q-31 + 186q-30 - 1134q-29 - 1650q-28 - 699q-27 + 1099q-26 + 2200q-25 + 1387q-24 - 888q-23 - 2662q-22 - 2125q-21 + 494q-20 + 2955q-19 + 2877q-18 + 9q-17 - 3114q-16 - 3506q-15 - 568q-14 + 3121q-13 + 4033q-12 + 1086q-11 - 3040q-10 - 4387q-9 - 1560q-8 + 2881q-7 + 4660q-6 + 1920q-5 - 2707q-4 - 4762q-3 - 2247q-2 + 2479q-1 + 4841 + 2479q - 2247q2 - 4762q3 - 2707q4 + 1920q5 + 4660q6 + 2881q7 - 1560q8 - 4387q9 - 3040q10 + 1086q11 + 4033q12 + 3121q13 - 568q14 - 3506q15 - 3114q16 + 9q17 + 2877q18 + 2955q19 + 494q20 - 2125q21 - 2662q22 - 888q23 + 1387q24 + 2200q25 + 1099q26 - 699q27 - 1650q28 - 1134q29 + 186q30 + 1094q31 + 976q32 + 141q33 - 603q34 - 728q35 - 285q36 + 264q37 + 462q38 + 270q39 - 60q40 - 237q41 - 197q42 - 31q43 + 107q44 + 112q45 + 35q46 - 34q47 - 43q48 - 30q49 + 4q50 + 26q51 + 8q52 - 5q53 - 2q54 - 3q55 - 3q56 + 5q57 + q58 - 3q59 + q60 |
6 | q-84 - 3q-83 + q-82 + 5q-81 - 3q-80 - 3q-79 - 6q-78 + 10q-77 - 3q-76 + 3q-75 + 29q-74 - 15q-73 - 31q-72 - 49q-71 + 14q-70 + 16q-69 + 61q-68 + 153q-67 + 14q-66 - 117q-65 - 273q-64 - 149q-63 - 92q-62 + 203q-61 + 641q-60 + 463q-59 + 57q-58 - 691q-57 - 870q-56 - 1005q-55 - 189q-54 + 1343q-53 + 1882q-52 + 1543q-51 - 247q-50 - 1725q-49 - 3355q-48 - 2544q-47 + 658q-46 + 3470q-45 + 4894q-44 + 2812q-43 - 590q-42 - 5842q-41 - 7188q-40 - 3328q-39 + 2689q-38 + 8288q-37 + 8456q-36 + 4312q-35 - 5674q-34 - 11801q-33 - 10070q-32 - 1954q-31 + 8878q-30 + 14013q-29 + 11845q-28 - 1776q-27 - 13643q-26 - 16608q-25 - 8872q-24 + 6032q-23 + 16953q-22 + 18906q-21 + 4000q-20 - 12400q-19 - 20628q-18 - 15121q-17 + 1645q-16 + 17146q-15 + 23466q-14 + 9075q-13 - 9763q-12 - 22071q-11 - 19122q-10 - 2210q-9 + 15962q-8 + 25565q-7 + 12389q-6 - 7226q-5 - 22014q-4 - 21134q-3 - 4957q-2 + 14414q-1 + 26111 + 14414q - 4957q2 - 21134q3 - 22014q4 - 7226q5 + 12389q6 + 25565q7 + 15962q8 - 2210q9 - 19122q10 - 22071q11 - 9763q12 + 9075q13 + 23466q14 + 17146q15 + 1645q16 - 15121q17 - 20628q18 - 12400q19 + 4000q20 + 18906q21 + 16953q22 + 6032q23 - 8872q24 - 16608q25 - 13643q26 - 1776q27 + 11845q28 + 14013q29 + 8878q30 - 1954q31 - 10070q32 - 11801q33 - 5674q34 + 4312q35 + 8456q36 + 8288q37 + 2689q38 - 3328q39 - 7188q40 - 5842q41 - 590q42 + 2812q43 + 4894q44 + 3470q45 + 658q46 - 2544q47 - 3355q48 - 1725q49 - 247q50 + 1543q51 + 1882q52 + 1343q53 - 189q54 - 1005q55 - 870q56 - 691q57 + 57q58 + 463q59 + 641q60 + 203q61 - 92q62 - 149q63 - 273q64 - 117q65 + 14q66 + 153q67 + 61q68 + 16q69 + 14q70 - 49q71 - 31q72 - 15q73 + 29q74 + 3q75 - 3q76 + 10q77 - 6q78 - 3q79 - 3q80 + 5q81 + q82 - 3q83 + q84 |
7 | q-112 - 3q-111 + q-110 + 5q-109 - 3q-108 - 3q-107 - 6q-106 + 6q-105 + 12q-104 - 8q-103 + 6q-102 + 10q-101 - 16q-100 - 26q-99 - 41q-98 + 7q-97 + 74q-96 + 44q-95 + 71q-94 + 43q-93 - 78q-92 - 159q-91 - 283q-90 - 154q-89 + 143q-88 + 317q-87 + 550q-86 + 516q-85 + 93q-84 - 417q-83 - 1159q-82 - 1332q-81 - 683q-80 + 256q-79 + 1725q-78 + 2573q-77 + 2216q-76 + 836q-75 - 1934q-74 - 4278q-73 - 4774q-72 - 3301q-71 + 913q-70 + 5542q-69 + 8189q-68 + 7815q-67 + 2389q-66 - 5364q-65 - 11792q-64 - 14143q-63 - 8598q-62 + 2327q-61 + 13890q-60 + 21402q-59 + 18063q-58 + 4775q-57 - 12979q-56 - 28137q-55 - 29695q-54 - 16138q-53 + 7462q-52 + 32099q-51 + 41960q-50 + 31319q-49 + 3221q-48 - 31814q-47 - 52797q-46 - 48414q-45 - 18546q-44 + 26269q-43 + 60101q-42 + 65456q-41 + 37209q-40 - 15734q-39 - 62982q-38 - 80416q-37 - 56819q-36 + 1416q-35 + 61028q-34 + 91744q-33 + 75657q-32 + 14955q-31 - 55290q-30 - 98994q-29 - 91866q-28 - 31357q-27 + 46837q-26 + 102372q-25 + 104758q-24 + 46339q-23 - 37376q-22 - 102713q-21 - 113992q-20 - 58991q-19 + 28020q-18 + 101063q-17 + 120209q-16 + 68876q-15 - 19792q-14 - 98300q-13 - 123826q-12 - 76313q-11 + 12722q-10 + 95254q-9 + 125943q-8 + 81699q-7 - 7156q-6 - 92151q-5 - 126720q-4 - 85773q-3 + 2177q-2 + 89089q-1 + 127145 + 89089q + 2177q2 - 85773q3 - 126720q4 - 92151q5 - 7156q6 + 81699q7 + 125943q8 + 95254q9 + 12722q10 - 76313q11 - 123826q12 - 98300q13 - 19792q14 + 68876q15 + 120209q16 + 101063q17 + 28020q18 - 58991q19 - 113992q20 - 102713q21 - 37376q22 + 46339q23 + 104758q24 + 102372q25 + 46837q26 - 31357q27 - 91866q28 - 98994q29 - 55290q30 + 14955q31 + 75657q32 + 91744q33 + 61028q34 + 1416q35 - 56819q36 - 80416q37 - 62982q38 - 15734q39 + 37209q40 + 65456q41 + 60101q42 + 26269q43 - 18546q44 - 48414q45 - 52797q46 - 31814q47 + 3221q48 + 31319q49 + 41960q50 + 32099q51 + 7462q52 - 16138q53 - 29695q54 - 28137q55 - 12979q56 + 4775q57 + 18063q58 + 21402q59 + 13890q60 + 2327q61 - 8598q62 - 14143q63 - 11792q64 - 5364q65 + 2389q66 + 7815q67 + 8189q68 + 5542q69 + 913q70 - 3301q71 - 4774q72 - 4278q73 - 1934q74 + 836q75 + 2216q76 + 2573q77 + 1725q78 + 256q79 - 683q80 - 1332q81 - 1159q82 - 417q83 + 93q84 + 516q85 + 550q86 + 317q87 + 143q88 - 154q89 - 283q90 - 159q91 - 78q92 + 43q93 + 71q94 + 44q95 + 74q96 + 7q97 - 41q98 - 26q99 - 16q100 + 10q101 + 6q102 - 8q103 + 12q104 + 6q105 - 6q106 - 3q107 - 3q108 + 5q109 + q110 - 3q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 17]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14], > X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]] |
In[3]:= | GaussCode[Knot[8, 17]] |
Out[3]= | GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7] |
In[4]:= | DTCode[Knot[8, 17]] |
Out[4]= | DTCode[6, 8, 12, 14, 4, 16, 2, 10] |
In[5]:= | br = BR[Knot[8, 17]] |
Out[5]= | BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 17]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 17]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 17]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 1, 3, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[8, 17]][t] |
Out[10]= | -3 4 8 2 3 11 - t + -- - - - 8 t + 4 t - t 2 t t |
In[11]:= | Conway[Knot[8, 17]][z] |
Out[11]= | 2 4 6 1 - z - 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 17], Knot[11, NonAlternating, 53]} |
In[13]:= | {KnotDet[Knot[8, 17]], KnotSignature[Knot[8, 17]]} |
Out[13]= | {37, 0} |
In[14]:= | Jones[Knot[8, 17]][q] |
Out[14]= | -4 3 5 6 2 3 4 7 + q - -- + -- - - - 6 q + 5 q - 3 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 17]} |
In[16]:= | A2Invariant[Knot[8, 17]][q] |
Out[16]= | -12 -10 -8 -4 2 2 4 8 10 12 -1 + q - q + q - q + -- + 2 q - q + q - q + q 2 q |
In[17]:= | HOMFLYPT[Knot[8, 17]][a, z] |
Out[17]= | 2 4 -2 2 2 2 z 2 2 4 z 2 4 6 -1 + a + a - 5 z + ---- + 2 a z - 4 z + -- + a z - z 2 2 a a |
In[18]:= | Kauffman[Knot[8, 17]][a, z] |
Out[18]= | 2 2 -2 2 z 2 z 3 2 z 3 z 2 2 4 2 -1 - a - a + -- + --- + 2 a z + a z + 8 z - -- + ---- + 3 a z - a z - 3 a 4 2 a a a 3 3 4 4 4 z 6 z 3 3 3 4 z 6 z 2 4 4 4 > ---- - ---- - 6 a z - 4 a z - 14 z + -- - ---- - 6 a z + a z + 3 a 4 2 a a a 5 5 6 7 3 z 2 z 5 3 5 6 4 z 2 6 2 z 7 > ---- + ---- + 2 a z + 3 a z + 8 z + ---- + 4 a z + ---- + 2 a z 3 a 2 a a a |
In[19]:= | {Vassiliev[2][Knot[8, 17]], Vassiliev[3][Knot[8, 17]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[8, 17]][q, t] |
Out[20]= | 4 1 2 1 3 2 3 3 3 - + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t + 3 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 9 4 > 2 q t + 3 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[8, 17], 2][q] |
Out[21]= | -12 3 -10 9 14 3 28 25 14 47 29 25 55 + q - --- + q + -- - -- - -- + -- - -- - -- + -- - -- - -- - 25 q - 11 9 8 7 6 5 4 3 2 q q q q q q q q q q 2 3 4 5 6 7 8 9 10 11 > 29 q + 47 q - 14 q - 25 q + 28 q - 3 q - 14 q + 9 q + q - 3 q + 12 > q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 817 |
|