© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 816Visit 816's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 816's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13 |
Gauss Code: | {1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 8 14 12 4 16 2 10 |
Minimum Braid Representative:
Length is 8, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 4t-2 + 8t-1 - 9 + 8t - 4t2 + t3 |
Conway Polynomial: | 1 + z2 + 2z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {10156, K11n15, K11n56, K11n58, ...} |
Determinant and Signature: | {35, -2} |
Jones Polynomial: | - q-6 + 3q-5 - 5q-4 + 6q-3 - 6q-2 + 6q-1 - 4 + 3q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {10156, ...} |
A2 (sl(3)) Invariant: | - q-18 + q-16 - q-14 + q-10 - q-8 + 2q-6 - q-4 + 2q-2 + 1 + q4 - q6 |
HOMFLY-PT Polynomial: | - 2z2 - z4 + 2a2 + 5a2z2 + 4a2z4 + a2z6 - a4 - 2a4z2 - a4z4 |
Kauffman Polynomial: | a-1z - 2a-1z3 + a-1z5 + 5z2 - 8z4 + 3z6 + 3az - 6az3 - az5 + 2az7 - 2a2 + 10a2z2 - 18a2z4 + 8a2z6 + 4a3z - 10a3z3 + 3a3z5 + 2a3z7 - a4 + 4a4z2 - 7a4z4 + 5a4z6 + 2a5z - 5a5z3 + 5a5z5 - a6z2 + 3a6z4 + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 816. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 3q-16 + 2q-15 + 6q-14 - 15q-13 + 7q-12 + 19q-11 - 32q-10 + 8q-9 + 32q-8 - 41q-7 + 4q-6 + 38q-5 - 37q-4 - 3q-3 + 35q-2 - 25q-1 - 8 + 24q - 10q2 - 8q3 + 10q4 - q5 - 3q6 + q7 |
3 | - q-33 + 3q-32 - 2q-31 - 3q-30 + 3q-29 + 8q-28 - 8q-27 - 19q-26 + 19q-25 + 34q-24 - 28q-23 - 58q-22 + 33q-21 + 88q-20 - 35q-19 - 116q-18 + 31q-17 + 139q-16 - 20q-15 - 155q-14 + 8q-13 + 159q-12 + 8q-11 - 160q-10 - 19q-9 + 147q-8 + 37q-7 - 136q-6 - 46q-5 + 113q-4 + 63q-3 - 96q-2 - 64q-1 + 65 + 70q - 43q2 - 61q3 + 18q4 + 51q5 - 3q6 - 33q7 - 8q8 + 20q9 + 8q10 - 8q11 - 5q12 + q13 + 3q14 - q15 |
4 | q-54 - 3q-53 + 2q-52 + 3q-51 - 6q-50 + 4q-49 - 7q-48 + 14q-47 + 8q-46 - 35q-45 + 3q-44 - 7q-43 + 67q-42 + 37q-41 - 117q-40 - 55q-39 - 23q-38 + 202q-37 + 153q-36 - 217q-35 - 206q-34 - 130q-33 + 362q-32 + 376q-31 - 239q-30 - 378q-29 - 330q-28 + 437q-27 + 596q-26 - 160q-25 - 454q-24 - 522q-23 + 401q-22 + 706q-21 - 50q-20 - 420q-19 - 625q-18 + 306q-17 + 694q-16 + 48q-15 - 319q-14 - 650q-13 + 182q-12 + 609q-11 + 140q-10 - 182q-9 - 619q-8 + 32q-7 + 466q-6 + 224q-5 - 16q-4 - 526q-3 - 116q-2 + 269q-1 + 250 + 140q - 350q2 - 190q3 + 61q4 + 175q5 + 210q6 - 142q7 - 146q8 - 62q9 + 49q10 + 157q11 - 7q12 - 47q13 - 63q14 - 22q15 + 59q16 + 17q17 + 5q18 - 18q19 - 18q20 + 8q21 + 3q22 + 5q23 - q24 - 3q25 + q26 |
5 | - q-80 + 3q-79 - 2q-78 - 3q-77 + 6q-76 - q-75 - 5q-74 + q-73 - 3q-72 + 2q-71 + 22q-70 + 6q-69 - 33q-68 - 41q-67 - 12q-66 + 59q-65 + 109q-64 + 51q-63 - 112q-62 - 243q-61 - 134q-60 + 171q-59 + 428q-58 + 326q-57 - 182q-56 - 696q-55 - 640q-54 + 125q-53 + 975q-52 + 1060q-51 + 77q-50 - 1216q-49 - 1566q-48 - 411q-47 + 1370q-46 + 2065q-45 + 837q-44 - 1369q-43 - 2501q-42 - 1311q-41 + 1252q-40 + 2809q-39 + 1752q-38 - 1048q-37 - 2962q-36 - 2109q-35 + 786q-34 + 2993q-33 + 2366q-32 - 542q-31 - 2921q-30 - 2494q-29 + 297q-28 + 2779q-27 + 2567q-26 - 107q-25 - 2596q-24 - 2546q-23 - 103q-22 + 2379q-21 + 2526q-20 + 276q-19 - 2123q-18 - 2443q-17 - 513q-16 + 1833q-15 + 2379q-14 + 708q-13 - 1479q-12 - 2224q-11 - 975q-10 + 1089q-9 + 2062q-8 + 1152q-7 - 654q-6 - 1756q-5 - 1336q-4 + 207q-3 + 1442q-2 + 1351q-1 + 200 - 996q - 1299q2 - 520q3 + 579q4 + 1080q5 + 702q6 - 159q7 - 804q8 - 730q9 - 135q10 + 463q11 + 632q12 + 317q13 - 186q14 - 449q15 - 338q16 - 29q17 + 245q18 + 292q19 + 117q20 - 93q21 - 178q22 - 124q23 - 10q24 + 87q25 + 94q26 + 32q27 - 27q28 - 42q29 - 29q30 - 7q31 + 21q32 + 16q33 + 2q34 - 3q35 - 3q36 - 5q37 + q38 + 3q39 - q40 |
6 | q-111 - 3q-110 + 2q-109 + 3q-108 - 6q-107 + q-106 + 2q-105 + 11q-104 - 12q-103 - 7q-102 + 11q-101 - 25q-100 + 10q-99 + 33q-98 + 47q-97 - 36q-96 - 71q-95 - 31q-94 - 87q-93 + 70q-92 + 214q-91 + 245q-90 - 59q-89 - 327q-88 - 364q-87 - 438q-86 + 167q-85 + 818q-84 + 1086q-83 + 324q-82 - 780q-81 - 1461q-80 - 1843q-79 - 306q-78 + 1817q-77 + 3224q-76 + 2163q-75 - 538q-74 - 3174q-73 - 5023q-72 - 2639q-71 + 1989q-70 + 6230q-69 + 6070q-68 + 1838q-67 - 3938q-66 - 9081q-65 - 7147q-64 - 154q-63 + 8125q-62 + 10646q-61 + 6311q-60 - 2326q-59 - 11729q-58 - 11981q-57 - 4203q-56 + 7563q-55 + 13502q-54 + 10786q-53 + 978q-52 - 11817q-51 - 14881q-50 - 8049q-49 + 5360q-48 + 13829q-47 + 13348q-46 + 4031q-45 - 10272q-44 - 15409q-43 - 10203q-42 + 3162q-41 + 12629q-40 + 13912q-39 + 5801q-38 - 8458q-37 - 14578q-36 - 10853q-35 + 1604q-34 + 11007q-33 + 13452q-32 + 6680q-31 - 6739q-30 - 13273q-29 - 10915q-28 + 208q-27 + 9159q-26 + 12667q-25 + 7473q-24 - 4648q-23 - 11566q-22 - 10910q-21 - 1652q-20 + 6665q-19 + 11491q-18 + 8461q-17 - 1759q-16 - 9014q-15 - 10546q-14 - 3965q-13 + 3213q-12 + 9327q-11 + 9049q-10 + 1663q-9 - 5297q-8 - 8981q-7 - 5808q-6 - 771q-5 + 5767q-4 + 8140q-3 + 4404q-2 - 965q-1 - 5721 - 5842q - 3847q2 + 1485q3 + 5241q4 + 4974q5 + 2325q6 - 1651q7 - 3646q8 - 4476q9 - 1657q10 + 1515q11 + 3147q12 + 3059q13 + 1182q14 - 659q15 - 2743q16 - 2272q17 - 879q18 + 654q19 + 1657q20 + 1609q21 + 996q22 - 605q23 - 1100q24 - 1105q25 - 552q26 + 134q27 + 660q28 + 886q29 + 282q30 - 42q31 - 376q32 - 413q33 - 301q34 - 20q35 + 268q36 + 182q37 + 159q38 + 19q39 - 63q40 - 133q41 - 85q42 + 13q43 + 12q44 + 47q45 + 30q46 + 19q47 - 19q48 - 19q49 - 7q51 + 3q52 + 3q53 + 5q54 - q55 - 3q56 + q57 |
7 | - q-147 + 3q-146 - 2q-145 - 3q-144 + 6q-143 - q-142 - 2q-141 - 8q-140 + 22q-138 - 6q-137 - 8q-136 + 9q-135 - 16q-134 - 15q-133 - 25q-132 + 17q-131 + 99q-130 + 35q-129 - 15q-128 - 53q-127 - 162q-126 - 123q-125 - 63q-124 + 154q-123 + 465q-122 + 370q-121 + 107q-120 - 363q-119 - 921q-118 - 903q-117 - 456q-116 + 559q-115 + 1843q-114 + 2093q-113 + 1305q-112 - 698q-111 - 3212q-110 - 4130q-109 - 3153q-108 + 201q-107 + 4806q-106 + 7423q-105 + 6674q-104 + 1507q-103 - 6321q-102 - 11767q-101 - 12093q-100 - 5311q-99 + 6638q-98 + 16633q-97 + 19723q-96 + 11823q-95 - 4955q-94 - 21093q-93 - 28709q-92 - 21075q-91 + 298q-90 + 23751q-89 + 37962q-88 + 32625q-87 + 7529q-86 - 23700q-85 - 46094q-84 - 44973q-83 - 17896q-82 + 20314q-81 + 51610q-80 + 56667q-79 + 29826q-78 - 14044q-77 - 53989q-76 - 66212q-75 - 41513q-74 + 5813q-73 + 53060q-72 + 72699q-71 + 51715q-70 + 3119q-69 - 49674q-68 - 75993q-67 - 59471q-66 - 11370q-65 + 44850q-64 + 76462q-63 + 64426q-62 + 18181q-61 - 39541q-60 - 75019q-59 - 66976q-58 - 23142q-57 + 34715q-56 + 72462q-55 + 67545q-54 + 26397q-53 - 30530q-52 - 69481q-51 - 67044q-50 - 28413q-49 + 27181q-48 + 66514q-47 + 65879q-46 + 29684q-45 - 24173q-44 - 63577q-43 - 64672q-42 - 30840q-41 + 21301q-40 + 60622q-39 + 63392q-38 + 32218q-37 - 17878q-36 - 57325q-35 - 62288q-34 - 34098q-33 + 13846q-32 + 53343q-31 + 60871q-30 + 36527q-29 - 8627q-28 - 48383q-27 - 59199q-26 - 39239q-25 + 2550q-24 + 42097q-23 + 56398q-22 + 41971q-21 + 4638q-20 - 34421q-19 - 52503q-18 - 44047q-17 - 11993q-16 + 25329q-15 + 46617q-14 + 44807q-13 + 19379q-12 - 15197q-11 - 39112q-10 - 43600q-9 - 25363q-8 + 4823q-7 + 29561q-6 + 39865q-5 + 29521q-4 + 4988q-3 - 19117q-2 - 33687q-1 - 30600 - 12909q + 8356q2 + 25303q3 + 28705q4 + 18085q5 + 1107q6 - 15878q7 - 23784q8 - 19818q9 - 8340q10 + 6719q11 + 16969q12 + 18243q13 + 12286q14 + 851q15 - 9460q16 - 14181q17 - 13028q18 - 5758q19 + 2904q20 + 8840q21 + 10998q22 + 7752q23 + 1847q24 - 3711q25 - 7578q26 - 7274q27 - 4116q28 - 72q29 + 3816q30 + 5232q31 + 4399q32 + 2197q33 - 954q34 - 2899q35 - 3326q36 - 2595q37 - 694q38 + 879q39 + 1858q40 + 2115q41 + 1236q42 + 181q43 - 684q44 - 1207q45 - 990q46 - 577q47 - 59q48 + 507q49 + 605q50 + 496q51 + 231q52 - 102q53 - 206q54 - 265q55 - 236q56 - 63q57 + 50q58 + 117q59 + 119q60 + 39q61 + 24q62 - 13q63 - 50q64 - 35q65 - 20q66 + 7q67 + 17q68 + 3q69 + 5q70 + 7q71 - 3q72 - 3q73 - 5q74 + q75 + 3q76 - q77 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 16]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8], > X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]] |
In[3]:= | GaussCode[Knot[8, 16]] |
Out[3]= | GaussCode[1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3] |
In[4]:= | DTCode[Knot[8, 16]] |
Out[4]= | DTCode[6, 8, 14, 12, 4, 16, 2, 10] |
In[5]:= | br = BR[Knot[8, 16]] |
Out[5]= | BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 16]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 16]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 16]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[8, 16]][t] |
Out[10]= | -3 4 8 2 3 -9 + t - -- + - + 8 t - 4 t + t 2 t t |
In[11]:= | Conway[Knot[8, 16]][z] |
Out[11]= | 2 4 6 1 + z + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15], > Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]} |
In[13]:= | {KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]} |
Out[13]= | {35, -2} |
In[14]:= | Jones[Knot[8, 16]][q] |
Out[14]= | -6 3 5 6 6 6 2 -4 - q + -- - -- + -- - -- + - + 3 q - q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 16], Knot[10, 156]} |
In[16]:= | A2Invariant[Knot[8, 16]][q] |
Out[16]= | -18 -16 -14 -10 -8 2 -4 2 4 6 1 - q + q - q + q - q + -- - q + -- + q - q 6 2 q q |
In[17]:= | HOMFLYPT[Knot[8, 16]][a, z] |
Out[17]= | 2 4 2 2 2 4 2 4 2 4 4 4 2 6 2 a - a - 2 z + 5 a z - 2 a z - z + 4 a z - a z + a z |
In[18]:= | Kauffman[Knot[8, 16]][a, z] |
Out[18]= | 2 4 z 3 5 2 2 2 4 2 6 2 -2 a - a + - + 3 a z + 4 a z + 2 a z + 5 z + 10 a z + 4 a z - a z - a 3 2 z 3 3 3 5 3 7 3 4 2 4 4 4 > ---- - 6 a z - 10 a z - 5 a z + a z - 8 z - 18 a z - 7 a z + a 5 6 4 z 5 3 5 5 5 6 2 6 4 6 > 3 a z + -- - a z + 3 a z + 5 a z + 3 z + 8 a z + 5 a z + a 7 3 7 > 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[8, 16]][q, t] |
Out[20]= | 3 4 1 2 1 3 2 3 3 3 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 3 2 t 2 3 2 5 3 > ---- + --- + 2 q t + q t + 2 q t + q t 3 q q t |
In[21]:= | ColouredJones[Knot[8, 16], 2][q] |
Out[21]= | -17 3 2 6 15 7 19 32 8 32 41 4 38 -8 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - 16 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 37 3 35 25 2 3 4 5 6 7 > -- - -- + -- - -- + 24 q - 10 q - 8 q + 10 q - q - 3 q + q 4 3 2 q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 816 |
|