© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 815Visit 815's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 815's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X7283 |
Gauss Code: | {-1, 8, -2, 1, -3, 7, -8, 2, -5, 6, -7, 3, -4, 5, -6, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 14 6 16 10 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 8t-1 + 11 - 8t + 3t2 |
Conway Polynomial: | 1 + 4z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n65, ...} |
Determinant and Signature: | {33, -4} |
Jones Polynomial: | q-10 - 3q-9 + 4q-8 - 6q-7 + 6q-6 - 5q-5 + 5q-4 - 2q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-32 + q-30 - 2q-28 - q-26 - 2q-24 - 2q-22 + q-20 + 3q-16 + q-14 + q-12 + 2q-10 - q-8 + q-6 |
HOMFLY-PT Polynomial: | a4 + 2a4z2 + a4z4 + 3a6 + 5a6z2 + 2a6z4 - 4a8 - 3a8z2 + a10 |
Kauffman Polynomial: | a4 - 2a4z2 + a4z4 - 2a5z3 + 2a5z5 - 3a6 + 5a6z2 - 5a6z4 + 3a6z6 + 6a7z - 11a7z3 + 5a7z5 + a7z7 - 4a8 + 8a8z2 - 10a8z4 + 6a8z6 + 8a9z - 14a9z3 + 6a9z5 + a9z7 - a10 - 3a10z4 + 3a10z6 + 2a11z - 5a11z3 + 3a11z5 - a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, -7} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 815. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 3q-27 + 9q-25 - 11q-24 - 4q-23 + 24q-22 - 19q-21 - 14q-20 + 39q-19 - 22q-18 - 23q-17 + 44q-16 - 19q-15 - 25q-14 + 37q-13 - 10q-12 - 20q-11 + 22q-10 - 2q-9 - 10q-8 + 7q-7 + q-6 - 2q-5 + q-4 |
3 | q-54 - 3q-53 + 5q-51 + 4q-50 - 11q-49 - 11q-48 + 20q-47 + 20q-46 - 25q-45 - 40q-44 + 32q-43 + 60q-42 - 30q-41 - 89q-40 + 30q-39 + 109q-38 - 15q-37 - 136q-36 + 10q-35 + 148q-34 + 5q-33 - 159q-32 - 15q-31 + 160q-30 + 24q-29 - 152q-28 - 37q-27 + 144q-26 + 38q-25 - 118q-24 - 51q-23 + 101q-22 + 45q-21 - 68q-20 - 51q-19 + 52q-18 + 35q-17 - 24q-16 - 31q-15 + 14q-14 + 18q-13 - 3q-12 - 10q-11 + 2q-10 + 3q-9 + q-8 - 2q-7 + q-6 |
4 | q-88 - 3q-87 + 5q-85 + 4q-83 - 18q-82 - 4q-81 + 20q-80 + 9q-79 + 23q-78 - 59q-77 - 34q-76 + 39q-75 + 45q-74 + 89q-73 - 117q-72 - 118q-71 + 18q-70 + 101q-69 + 239q-68 - 143q-67 - 246q-66 - 86q-65 + 128q-64 + 449q-63 - 94q-62 - 356q-61 - 251q-60 + 93q-59 + 646q-58 + 6q-57 - 406q-56 - 402q-55 + 19q-54 + 764q-53 + 105q-52 - 394q-51 - 496q-50 - 60q-49 + 788q-48 + 179q-47 - 336q-46 - 522q-45 - 132q-44 + 718q-43 + 226q-42 - 228q-41 - 482q-40 - 200q-39 + 563q-38 + 240q-37 - 89q-36 - 373q-35 - 240q-34 + 350q-33 + 204q-32 + 31q-31 - 221q-30 - 216q-29 + 153q-28 + 120q-27 + 78q-26 - 82q-25 - 133q-24 + 36q-23 + 39q-22 + 57q-21 - 11q-20 - 51q-19 + 4q-18 + q-17 + 19q-16 + 3q-15 - 11q-14 + 2q-13 - 2q-12 + 3q-11 + q-10 - 2q-9 + q-8 |
5 | q-130 - 3q-129 + 5q-127 - 3q-124 - 11q-123 - 4q-122 + 20q-121 + 18q-120 + 3q-119 - 20q-118 - 44q-117 - 26q-116 + 36q-115 + 88q-114 + 58q-113 - 41q-112 - 136q-111 - 136q-110 + 12q-109 + 214q-108 + 259q-107 + 42q-106 - 270q-105 - 414q-104 - 200q-103 + 308q-102 + 627q-101 + 396q-100 - 268q-99 - 821q-98 - 706q-97 + 160q-96 + 1021q-95 + 1017q-94 + 54q-93 - 1137q-92 - 1403q-91 - 299q-90 + 1211q-89 + 1703q-88 + 621q-87 - 1188q-86 - 2025q-85 - 911q-84 + 1153q-83 + 2203q-82 + 1209q-81 - 1038q-80 - 2387q-79 - 1439q-78 + 941q-77 + 2454q-76 + 1631q-75 - 805q-74 - 2493q-73 - 1777q-72 + 680q-71 + 2477q-70 + 1870q-69 - 542q-68 - 2389q-67 - 1944q-66 + 372q-65 + 2293q-64 + 1956q-63 - 211q-62 - 2072q-61 - 1965q-60 - 8q-59 + 1874q-58 + 1883q-57 + 190q-56 - 1526q-55 - 1793q-54 - 414q-53 + 1247q-52 + 1584q-51 + 542q-50 - 827q-49 - 1385q-48 - 667q-47 + 551q-46 + 1077q-45 + 656q-44 - 205q-43 - 805q-42 - 640q-41 + 49q-40 + 510q-39 + 499q-38 + 115q-37 - 294q-36 - 383q-35 - 134q-34 + 127q-33 + 232q-32 + 143q-31 - 40q-30 - 134q-29 - 88q-28 - 12q-27 + 59q-26 + 61q-25 + 13q-24 - 27q-23 - 17q-22 - 15q-21 + 3q-20 + 16q-19 + 4q-18 - 5q-17 + q-16 - 2q-15 - 2q-14 + 3q-13 + q-12 - 2q-11 + q-10 |
6 | q-180 - 3q-179 + 5q-177 - 7q-174 + 4q-173 - 11q-172 - 4q-171 + 29q-170 + 9q-169 + 3q-168 - 31q-167 - 5q-166 - 47q-165 - 18q-164 + 91q-163 + 69q-162 + 47q-161 - 74q-160 - 47q-159 - 198q-158 - 121q-157 + 183q-156 + 257q-155 + 280q-154 - 17q-153 - 98q-152 - 592q-151 - 552q-150 + 87q-149 + 546q-148 + 898q-147 + 506q-146 + 170q-145 - 1173q-144 - 1572q-143 - 716q-142 + 478q-141 + 1782q-140 + 1826q-139 + 1399q-138 - 1340q-137 - 2977q-136 - 2574q-135 - 685q-134 + 2197q-133 + 3649q-132 + 3866q-131 - 317q-130 - 3915q-129 - 5044q-128 - 3121q-127 + 1386q-126 + 5054q-125 + 6946q-124 + 1937q-123 - 3682q-122 - 7120q-121 - 6075q-120 - 556q-119 + 5393q-118 + 9567q-117 + 4601q-116 - 2448q-115 - 8179q-114 - 8521q-113 - 2802q-112 + 4841q-111 + 11131q-110 + 6758q-109 - 922q-108 - 8338q-107 - 9983q-106 - 4607q-105 + 3946q-104 + 11714q-103 + 8084q-102 + 381q-101 - 7983q-100 - 10582q-99 - 5800q-98 + 3029q-97 + 11598q-96 + 8747q-95 + 1444q-94 - 7282q-93 - 10565q-92 - 6597q-91 + 1999q-90 + 10872q-89 + 8961q-88 + 2500q-87 - 6082q-86 - 9954q-85 - 7176q-84 + 622q-83 + 9364q-82 + 8682q-81 + 3648q-80 - 4188q-79 - 8535q-78 - 7386q-77 - 1104q-76 + 6936q-75 + 7623q-74 + 4584q-73 - 1759q-72 - 6189q-71 - 6793q-70 - 2673q-69 + 3891q-68 + 5613q-67 + 4699q-66 + 491q-65 - 3295q-64 - 5153q-63 - 3312q-62 + 1117q-61 + 3049q-60 + 3681q-59 + 1677q-58 - 790q-57 - 2904q-56 - 2719q-55 - 459q-54 + 879q-53 + 2011q-52 + 1564q-51 + 496q-50 - 1020q-49 - 1468q-48 - 714q-47 - 179q-46 + 644q-45 + 804q-44 + 618q-43 - 113q-42 - 472q-41 - 346q-40 - 301q-39 + 49q-38 + 216q-37 + 299q-36 + 60q-35 - 73q-34 - 60q-33 - 124q-32 - 42q-31 + 17q-30 + 82q-29 + 20q-28 - 4q-27 + 9q-26 - 25q-25 - 14q-24 - 6q-23 + 18q-22 + q-21 - 4q-20 + 7q-19 - 3q-18 - 2q-17 - 2q-16 + 3q-15 + q-14 - 2q-13 + q-12 |
7 | q-238 - 3q-237 + 5q-235 - 7q-232 + 4q-230 - 11q-229 + 5q-228 + 20q-227 + 9q-226 + 3q-225 - 31q-224 - 27q-223 + 3q-222 - 28q-221 + 26q-220 + 72q-219 + 59q-218 + 50q-217 - 85q-216 - 137q-215 - 89q-214 - 117q-213 + 52q-212 + 227q-211 + 268q-210 + 307q-209 - 46q-208 - 375q-207 - 476q-206 - 603q-205 - 166q-204 + 408q-203 + 838q-202 + 1216q-201 + 639q-200 - 356q-199 - 1225q-198 - 2043q-197 - 1526q-196 - 167q-195 + 1417q-194 + 3187q-193 + 3053q-192 + 1312q-191 - 1288q-190 - 4347q-189 - 5056q-188 - 3350q-187 + 204q-186 + 5202q-185 + 7634q-184 + 6422q-183 + 1885q-182 - 5371q-181 - 10095q-180 - 10336q-179 - 5489q-178 + 4278q-177 + 12281q-176 + 14864q-175 + 10239q-174 - 1746q-173 - 13373q-172 - 19357q-171 - 16171q-170 - 2311q-169 + 13290q-168 + 23332q-167 + 22422q-166 + 7629q-165 - 11572q-164 - 26344q-163 - 28722q-162 - 13734q-161 + 8765q-160 + 28072q-159 + 34166q-158 + 20059q-157 - 4784q-156 - 28555q-155 - 38856q-154 - 26035q-153 + 598q-152 + 28009q-151 + 42093q-150 + 31235q-149 + 3879q-148 - 26695q-147 - 44468q-146 - 35542q-145 - 7705q-144 + 25027q-143 + 45645q-142 + 38759q-141 + 11205q-140 - 23147q-139 - 46293q-138 - 41152q-137 - 13920q-136 + 21395q-135 + 46276q-134 + 42728q-133 + 16181q-132 - 19653q-131 - 45938q-130 - 43820q-129 - 18022q-128 + 18010q-127 + 45310q-126 + 44457q-125 + 19570q-124 - 16241q-123 - 44255q-122 - 44808q-121 - 21172q-120 + 14253q-119 + 42923q-118 + 44836q-117 + 22629q-116 - 11853q-115 - 40815q-114 - 44475q-113 - 24374q-112 + 8921q-111 + 38187q-110 + 43610q-109 + 25855q-108 - 5428q-107 - 34422q-106 - 41993q-105 - 27450q-104 + 1428q-103 + 30019q-102 + 39474q-101 + 28289q-100 + 2813q-99 - 24396q-98 - 35892q-97 - 28747q-96 - 6954q-95 + 18529q-94 + 31256q-93 + 27728q-92 + 10580q-91 - 12026q-90 - 25701q-89 - 25969q-88 - 13197q-87 + 6291q-86 + 19601q-85 + 22554q-84 + 14463q-83 - 932q-82 - 13455q-81 - 18648q-80 - 14330q-79 - 2683q-78 + 7927q-77 + 13835q-76 + 12813q-75 + 5123q-74 - 3321q-73 - 9460q-72 - 10470q-71 - 5775q-70 + 195q-69 + 5418q-68 + 7594q-67 + 5479q-66 + 1649q-65 - 2506q-64 - 4961q-63 - 4283q-62 - 2251q-61 + 538q-60 + 2752q-59 + 2971q-58 + 2113q-57 + 377q-56 - 1248q-55 - 1698q-54 - 1582q-53 - 720q-52 + 389q-51 + 869q-50 + 972q-49 + 593q-48 - 5q-47 - 273q-46 - 525q-45 - 440q-44 - 100q-43 + 88q-42 + 233q-41 + 199q-40 + 77q-39 + 47q-38 - 76q-37 - 126q-36 - 53q-35 - 13q-34 + 35q-33 + 29q-32 + 4q-31 + 35q-30 - 22q-28 - 12q-27 - 5q-26 + 9q-25 + 3q-24 - 7q-23 + 8q-22 + 3q-21 - 3q-20 - 2q-19 - 2q-18 + 3q-17 + q-16 - 2q-15 + q-14 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 15]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[13, 16, 14, 1], > X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[8, 15]] |
Out[3]= | GaussCode[-1, 8, -2, 1, -3, 7, -8, 2, -5, 6, -7, 3, -4, 5, -6, 4] |
In[4]:= | DTCode[Knot[8, 15]] |
Out[4]= | DTCode[4, 8, 12, 2, 14, 6, 16, 10] |
In[5]:= | br = BR[Knot[8, 15]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, -2, -2, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[8, 15]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[8, 15]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 15]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 15]][t] |
Out[10]= | 3 8 2 11 + -- - - - 8 t + 3 t 2 t t |
In[11]:= | Conway[Knot[8, 15]][z] |
Out[11]= | 2 4 1 + 4 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 15], Knot[11, NonAlternating, 65]} |
In[13]:= | {KnotDet[Knot[8, 15]], KnotSignature[Knot[8, 15]]} |
Out[13]= | {33, -4} |
In[14]:= | Jones[Knot[8, 15]][q] |
Out[14]= | -10 3 4 6 6 5 5 2 -2 q - -- + -- - -- + -- - -- + -- - -- + q 9 8 7 6 5 4 3 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 15]} |
In[16]:= | A2Invariant[Knot[8, 15]][q] |
Out[16]= | -32 -30 2 -26 2 2 -20 3 -14 -12 2 -8 q + q - --- - q - --- - --- + q + --- + q + q + --- - q + 28 24 22 16 10 q q q q q -6 > q |
In[17]:= | HOMFLYPT[Knot[8, 15]][a, z] |
Out[17]= | 4 6 8 10 4 2 6 2 8 2 4 4 6 4 a + 3 a - 4 a + a + 2 a z + 5 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[8, 15]][a, z] |
Out[18]= | 4 6 8 10 7 9 11 4 2 6 2 a - 3 a - 4 a - a + 6 a z + 8 a z + 2 a z - 2 a z + 5 a z + 8 2 12 2 5 3 7 3 9 3 11 3 4 4 > 8 a z - a z - 2 a z - 11 a z - 14 a z - 5 a z + a z - 6 4 8 4 10 4 12 4 5 5 7 5 9 5 > 5 a z - 10 a z - 3 a z + a z + 2 a z + 5 a z + 6 a z + 11 5 6 6 8 6 10 6 7 7 9 7 > 3 a z + 3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 15]], Vassiliev[3][Knot[8, 15]]} |
Out[19]= | {4, -7} |
In[20]:= | Kh[Knot[8, 15]][q, t] |
Out[20]= | -5 -3 1 2 1 2 2 4 2 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q t q t q t q t q t q t q t 2 4 3 2 2 3 2 > ------ + ------ + ------ + ----- + ----- + ----- + ---- 13 4 11 4 11 3 9 3 9 2 7 2 5 q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[8, 15], 2][q] |
Out[21]= | -28 3 9 11 4 24 19 14 39 22 23 44 19 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 27 25 24 23 22 21 20 19 18 17 16 15 q q q q q q q q q q q q 25 37 10 20 22 2 10 7 -6 2 -4 > --- + --- - --- - --- + --- - -- - -- + -- + q - -- + q 14 13 12 11 10 9 8 7 5 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 815 |
|