© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 814Visit 814's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 814's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,14,8,15 X11,16,12,1 X15,12,16,13 X13,6,14,7 |
Gauss Code: | {-1, 4, -3, 1, -2, 8, -5, 3, -4, 2, -6, 7, -8, 5, -7, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 14 2 16 6 12 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 8t-1 - 11 + 8t - 2t2 |
Conway Polynomial: | 1 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {98, 10131, ...} |
Determinant and Signature: | {31, -2} |
Jones Polynomial: | q-7 - 3q-6 + 4q-5 - 5q-4 + 6q-3 - 5q-2 + 4q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - q-20 - q-18 + q-16 - q-14 + q-12 + q-6 - q-4 + 2q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 - a2z2 - a2z4 - a4z2 - a4z4 + a6z2 |
Kauffman Polynomial: | 1 - 2z2 + z4 + az - 3az3 + 2az5 - a2z2 - a2z4 + 2a2z6 + 3a3z - 6a3z3 + 3a3z5 + a3z7 + 3a4z2 - 7a4z4 + 5a4z6 + 3a5z - 8a5z3 + 4a5z5 + a5z7 + a6z2 - 4a6z4 + 3a6z6 + a7z - 5a7z3 + 3a7z5 - a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 814. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 3q-19 + 9q-17 - 10q-16 - 5q-15 + 22q-14 - 16q-13 - 14q-12 + 34q-11 - 18q-10 - 21q-9 + 39q-8 - 15q-7 - 22q-6 + 32q-5 - 8q-4 - 17q-3 + 18q-2 - 2q-1 - 8 + 6q - 2q3 + q4 |
3 | q-39 - 3q-38 + 5q-36 + 4q-35 - 10q-34 - 12q-33 + 17q-32 + 21q-31 - 19q-30 - 38q-29 + 21q-28 + 55q-27 - 16q-26 - 76q-25 + 12q-24 + 92q-23 - 2q-22 - 107q-21 - 8q-20 + 119q-19 + 15q-18 - 123q-17 - 26q-16 + 126q-15 + 29q-14 - 116q-13 - 39q-12 + 108q-11 + 40q-10 - 89q-9 - 43q-8 + 72q-7 + 39q-6 - 49q-5 - 37q-4 + 35q-3 + 26q-2 - 18q-1 - 20 + 11q + 11q2 - 4q3 - 7q4 + 3q5 + 2q6 - 2q8 + q9 |
4 | q-64 - 3q-63 + 5q-61 + 4q-59 - 17q-58 - 5q-57 + 17q-56 + 9q-55 + 27q-54 - 50q-53 - 36q-52 + 23q-51 + 34q-50 + 94q-49 - 81q-48 - 100q-47 - 15q-46 + 52q-45 + 218q-44 - 71q-43 - 175q-42 - 108q-41 + 35q-40 + 362q-39 - 12q-38 - 220q-37 - 225q-36 - 21q-35 + 481q-34 + 66q-33 - 228q-32 - 321q-31 - 89q-30 + 548q-29 + 131q-28 - 207q-27 - 375q-26 - 146q-25 + 555q-24 + 172q-23 - 161q-22 - 378q-21 - 189q-20 + 491q-19 + 191q-18 - 87q-17 - 331q-16 - 215q-15 + 368q-14 + 177q-13 - 5q-12 - 235q-11 - 206q-10 + 216q-9 + 126q-8 + 51q-7 - 123q-6 - 155q-5 + 94q-4 + 60q-3 + 56q-2 - 41q-1 - 84 + 31q + 14q2 + 31q3 - 7q4 - 32q5 + 11q6 - q7 + 10q8 - 9q10 + 4q11 - q12 + 2q13 - 2q15 + q16 |
5 | q-95 - 3q-94 + 5q-92 - 3q-89 - 10q-88 - 5q-87 + 17q-86 + 18q-85 + 6q-84 - 13q-83 - 39q-82 - 32q-81 + 16q-80 + 72q-79 + 66q-78 - 5q-77 - 94q-76 - 131q-75 - 46q-74 + 124q-73 + 219q-72 + 117q-71 - 118q-70 - 304q-69 - 258q-68 + 78q-67 + 409q-66 + 408q-65 + 19q-64 - 472q-63 - 607q-62 - 161q-61 + 518q-60 + 788q-59 + 348q-58 - 505q-57 - 981q-56 - 547q-55 + 465q-54 + 1126q-53 + 758q-52 - 390q-51 - 1248q-50 - 952q-49 + 304q-48 + 1334q-47 + 1113q-46 - 210q-45 - 1378q-44 - 1252q-43 + 114q-42 + 1414q-41 + 1342q-40 - 37q-39 - 1385q-38 - 1420q-37 - 60q-36 + 1376q-35 + 1443q-34 + 130q-33 - 1282q-32 - 1460q-31 - 234q-30 + 1203q-29 + 1429q-28 + 307q-27 - 1043q-26 - 1375q-25 - 407q-24 + 890q-23 + 1267q-22 + 475q-21 - 680q-20 - 1134q-19 - 534q-18 + 492q-17 + 949q-16 + 540q-15 - 274q-14 - 766q-13 - 525q-12 + 133q-11 + 553q-10 + 452q-9 + 8q-8 - 376q-7 - 378q-6 - 56q-5 + 220q-4 + 266q-3 + 98q-2 - 117q-1 - 183 - 79q + 46q2 + 103q3 + 69q4 - 18q5 - 58q6 - 33q7 - 3q8 + 24q9 + 27q10 - q11 - 15q12 - 3q13 - 4q14 + q15 + 9q16 - q17 - 5q18 + 2q19 - q21 + 2q22 - 2q24 + q25 |
6 | q-132 - 3q-131 + 5q-129 - 7q-126 + 4q-125 - 10q-124 - 5q-123 + 26q-122 + 9q-121 + 6q-120 - 25q-119 - 2q-118 - 46q-117 - 28q-116 + 67q-115 + 58q-114 + 59q-113 - 35q-112 - 5q-111 - 169q-110 - 151q-109 + 75q-108 + 155q-107 + 247q-106 + 85q-105 + 91q-104 - 377q-103 - 495q-102 - 156q-101 + 154q-100 + 552q-99 + 505q-98 + 564q-97 - 458q-96 - 1018q-95 - 834q-94 - 288q-93 + 686q-92 + 1162q-91 + 1623q-90 - 12q-89 - 1365q-88 - 1851q-87 - 1373q-86 + 228q-85 + 1669q-84 + 3080q-83 + 1119q-82 - 1116q-81 - 2767q-80 - 2861q-79 - 917q-78 + 1641q-77 + 4445q-76 + 2629q-75 - 237q-74 - 3204q-73 - 4253q-72 - 2391q-71 + 1087q-70 + 5343q-69 + 4022q-68 + 902q-67 - 3161q-66 - 5196q-65 - 3718q-64 + 325q-63 + 5739q-62 + 4985q-61 + 1907q-60 - 2868q-59 - 5654q-58 - 4641q-57 - 364q-56 + 5772q-55 + 5496q-54 + 2625q-53 - 2486q-52 - 5734q-51 - 5177q-50 - 923q-49 + 5517q-48 + 5656q-47 + 3131q-46 - 1996q-45 - 5490q-44 - 5422q-43 - 1457q-42 + 4912q-41 + 5492q-40 + 3519q-39 - 1279q-38 - 4845q-37 - 5373q-36 - 2036q-35 + 3853q-34 + 4898q-33 + 3737q-32 - 313q-31 - 3703q-30 - 4884q-29 - 2542q-28 + 2400q-27 + 3777q-26 + 3567q-25 + 676q-24 - 2180q-23 - 3841q-22 - 2673q-21 + 909q-20 + 2286q-19 + 2849q-18 + 1269q-17 - 703q-16 - 2424q-15 - 2225q-14 - 107q-13 + 882q-12 + 1757q-11 + 1230q-10 + 223q-9 - 1106q-8 - 1391q-7 - 420q-6 + 33q-5 + 751q-4 + 767q-3 + 459q-2 - 306q-1 - 616 - 279q - 206q2 + 181q3 + 305q4 + 310q5 - 27q6 - 188q7 - 77q8 - 142q9 + 2q10 + 70q11 + 129q12 + 8q13 - 45q14 + 7q15 - 51q16 - 14q17 + 5q18 + 40q19 - q20 - 13q21 + 14q22 - 12q23 - 4q24 - 3q25 + 11q26 - 2q27 - 6q28 + 6q29 - 2q30 - q32 + 2q33 - 2q35 + q36 |
7 | q-175 - 3q-174 + 5q-172 - 7q-169 + 4q-167 - 10q-166 + 4q-165 + 17q-164 + 9q-163 + 6q-162 - 25q-161 - 25q-160 + 2q-159 - 31q-158 + 12q-157 + 53q-156 + 53q-155 + 67q-154 - 42q-153 - 92q-152 - 71q-151 - 134q-150 - 28q-149 + 108q-148 + 175q-147 + 308q-146 + 110q-145 - 123q-144 - 244q-143 - 509q-142 - 353q-141 - 45q-140 + 295q-139 + 850q-138 + 772q-137 + 339q-136 - 211q-135 - 1140q-134 - 1342q-133 - 977q-132 - 212q-131 + 1361q-130 + 2102q-129 + 1949q-128 + 960q-127 - 1283q-126 - 2765q-125 - 3209q-124 - 2330q-123 + 685q-122 + 3337q-121 + 4701q-120 + 4126q-119 + 463q-118 - 3371q-117 - 6116q-116 - 6441q-115 - 2354q-114 + 2891q-113 + 7352q-112 + 8892q-111 + 4794q-110 - 1650q-109 - 8068q-108 - 11405q-107 - 7700q-106 - 179q-105 + 8222q-104 + 13609q-103 + 10761q-102 + 2596q-101 - 7771q-100 - 15435q-99 - 13766q-98 - 5250q-97 + 6798q-96 + 16696q-95 + 16494q-94 + 8006q-93 - 5449q-92 - 17494q-91 - 18810q-90 - 10582q-89 + 3934q-88 + 17836q-87 + 20621q-86 + 12872q-85 - 2380q-84 - 17841q-83 - 21998q-82 - 14797q-81 + 962q-80 + 17653q-79 + 22936q-78 + 16274q-77 + 318q-76 - 17258q-75 - 23547q-74 - 17493q-73 - 1413q-72 + 16880q-71 + 23889q-70 + 18291q-69 + 2364q-68 - 16270q-67 - 23985q-66 - 19044q-65 - 3258q-64 + 15709q-63 + 23913q-62 + 19454q-61 + 4117q-60 - 14790q-59 - 23577q-58 - 19909q-57 - 5089q-56 + 13796q-55 + 23014q-54 + 20069q-53 + 6107q-52 - 12343q-51 - 22038q-50 - 20178q-49 - 7272q-48 + 10636q-47 + 20697q-46 + 19907q-45 + 8428q-44 - 8479q-43 - 18830q-42 - 19338q-41 - 9558q-40 + 6129q-39 + 16479q-38 + 18233q-37 + 10439q-36 - 3553q-35 - 13698q-34 - 16688q-33 - 10925q-32 + 1136q-31 + 10638q-30 + 14515q-29 + 10901q-28 + 1100q-27 - 7532q-26 - 12076q-25 - 10290q-24 - 2657q-23 + 4616q-22 + 9280q-21 + 9111q-20 + 3744q-19 - 2147q-18 - 6681q-17 - 7550q-16 - 4003q-15 + 336q-14 + 4216q-13 + 5765q-12 + 3813q-11 + 847q-10 - 2342q-9 - 4081q-8 - 3130q-7 - 1355q-6 + 949q-5 + 2577q-4 + 2356q-3 + 1434q-2 - 152q-1 - 1475 - 1538q - 1203q2 - 269q3 + 725q4 + 925q5 + 874q6 + 340q7 - 289q8 - 439q9 - 566q10 - 336q11 + 87q12 + 214q13 + 318q14 + 199q15 - 7q16 - 29q17 - 164q18 - 157q19 - 14q20 + 19q21 + 83q22 + 52q23 + 35q25 - 25q26 - 51q27 - 8q28 - 4q29 + 21q30 + 6q31 - 11q32 + 20q33 + q34 - 12q35 - 2q36 - 3q37 + 7q38 - 7q40 + 5q41 + 2q42 - 2q43 - q45 + 2q46 - 2q48 + q49 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 14]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[7, 14, 8, 15], X[11, 16, 12, 1], X[15, 12, 16, 13], X[13, 6, 14, 7]] |
In[3]:= | GaussCode[Knot[8, 14]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 8, -5, 3, -4, 2, -6, 7, -8, 5, -7, 6] |
In[4]:= | DTCode[Knot[8, 14]] |
Out[4]= | DTCode[4, 8, 10, 14, 2, 16, 6, 12] |
In[5]:= | br = BR[Knot[8, 14]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[8, 14]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[8, 14]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 14]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[8, 14]][t] |
Out[10]= | 2 8 2 -11 - -- + - + 8 t - 2 t 2 t t |
In[11]:= | Conway[Knot[8, 14]][z] |
Out[11]= | 4 1 - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 14], Knot[9, 8], Knot[10, 131]} |
In[13]:= | {KnotDet[Knot[8, 14]], KnotSignature[Knot[8, 14]]} |
Out[13]= | {31, -2} |
In[14]:= | Jones[Knot[8, 14]][q] |
Out[14]= | -7 3 4 5 6 5 4 -2 + q - -- + -- - -- + -- - -- + - + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 14]} |
In[16]:= | A2Invariant[Knot[8, 14]][q] |
Out[16]= | -22 -20 -18 -16 -14 -12 -6 -4 2 4 q - q - q + q - q + q + q - q + -- + q 2 q |
In[17]:= | HOMFLYPT[Knot[8, 14]][a, z] |
Out[17]= | 2 2 2 4 2 6 2 2 4 4 4 1 + z - a z - a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[8, 14]][a, z] |
Out[18]= | 3 5 7 2 2 2 4 2 6 2 8 2 1 + a z + 3 a z + 3 a z + a z - 2 z - a z + 3 a z + a z - a z - 3 3 3 5 3 7 3 4 2 4 4 4 6 4 > 3 a z - 6 a z - 8 a z - 5 a z + z - a z - 7 a z - 4 a z + 8 4 5 3 5 5 5 7 5 2 6 4 6 > a z + 2 a z + 3 a z + 4 a z + 3 a z + 2 a z + 5 a z + 6 6 3 7 5 7 > 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 14]], Vassiliev[3][Knot[8, 14]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[8, 14]][q, t] |
Out[20]= | 2 3 1 2 1 2 2 3 2 3 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 3 2 3 t 3 2 > ----- + ---- + ---- + - + q t + q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[8, 14], 2][q] |
Out[21]= | -20 3 9 10 5 22 16 14 34 18 21 39 -8 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - -- + -- - 19 17 16 15 14 13 12 11 10 9 8 q q q q q q q q q q q 15 22 32 8 17 18 2 3 4 > -- - -- + -- - -- - -- + -- - - + 6 q - 2 q + q 7 6 5 4 3 2 q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 814 |
|