© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a276
K11a276
K11a278
K11a278
K11a277
Knotscape
This page is passe. Go here instead!

   The Knot K11a277

Visit K11a277's page at Knotilus!

Acknowledgement

K11a277 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X16,5,17,6 X12,8,13,7 X4,10,5,9 X18,11,19,12 X20,14,21,13 X22,16,1,15 X2,17,3,18 X8,19,9,20 X14,22,15,21

Gauss Code: {1, -9, 2, -5, 3, -1, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -6, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 10 16 12 4 18 20 22 2 8 14

Alexander Polynomial: - t-4 + 6t-3 - 17t-2 + 28t-1 - 31 + 28t - 17t2 + 6t3 - t4

Conway Polynomial: 1 - 2z2 - z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a99, ...}

Determinant and Signature: {135, 2}

Jones Polynomial: q-3 - 4q-2 + 9q-1 - 13 + 19q - 22q2 + 21q3 - 19q4 + 14q5 - 8q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + 3q-4 + 1 + 4q2 - 5q4 + 3q6 - 4q8 + q12 - 3q14 + 4q16 - q18 + q20 + q22 - q24

HOMFLY-PT Polynomial: - 2a-6z2 - a-6z4 + 2a-4 + 7a-4z2 + 7a-4z4 + 2a-4z6 - 4a-2 - 10a-2z2 - 10a-2z4 - 5a-2z6 - a-2z8 + 3 + 3z2 + 3z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + 2a-8z2 - 6a-8z4 + 4a-8z6 - a-7z + 3a-7z3 - 10a-7z5 + 7a-7z7 + 3a-6z2 - 2a-6z4 - 9a-6z6 + 8a-6z8 - 5a-5z + 6a-5z3 - 8a-5z7 + 7a-5z9 + 2a-4 - 11a-4z2 + 31a-4z4 - 28a-4z6 + 7a-4z8 + 3a-4z10 - 5a-3z - 6a-3z3 + 38a-3z5 - 40a-3z7 + 15a-3z9 + 4a-2 - 21a-2z2 + 49a-2z4 - 39a-2z6 + 7a-2z8 + 3a-2z10 - a-1z - 6a-1z3 + 18a-1z5 - 21a-1z7 + 8a-1z9 + 3 - 9z2 + 20z4 - 23z6 + 8z8 + 2az3 - 9az5 + 4az7 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11277. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         51 
j = 11        93  
j = 9       105   
j = 7      119    
j = 5     1110     
j = 3    811      
j = 1   612       
j = -1  37        
j = -3 16         
j = -5 3          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 277]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 277]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 5, 17, 6], X[12, 8, 13, 7], 
 
>   X[4, 10, 5, 9], X[18, 11, 19, 12], X[20, 14, 21, 13], X[22, 16, 1, 15], 
 
>   X[2, 17, 3, 18], X[8, 19, 9, 20], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 277]]
Out[4]=   
GaussCode[1, -9, 2, -5, 3, -1, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -6, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 277]]
Out[5]=   
DTCode[6, 10, 16, 12, 4, 18, 20, 22, 2, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 277]][t]
Out[6]=   
       -4   6    17   28              2      3    4
-31 - t   + -- - -- + -- + 28 t - 17 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 277]][z]
Out[7]=   
       2    4      6    8
1 - 2 z  - z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 99], Knot[11, Alternating, 277]}
In[9]:=
{KnotDet[Knot[11, Alternating, 277]], KnotSignature[Knot[11, Alternating, 277]]}
Out[9]=   
{135, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 277]][q]
Out[10]=   
       -3   4    9              2       3       4       5      6      7    8
-13 + q   - -- + - + 19 q - 22 q  + 21 q  - 19 q  + 14 q  - 8 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 277]}
In[12]:=
A2Invariant[Knot[11, Alternating, 277]][q]
Out[12]=   
     -8   2    3       2      4      6      8    12      14      16    18
1 + q   - -- + -- + 4 q  - 5 q  + 3 q  - 4 q  + q   - 3 q   + 4 q   - q   + 
           6    4
          q    q
 
     20    22    24
>   q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 277]][a, z]
Out[13]=   
                        2      2       2           4      4       4
    2    4       2   2 z    7 z    10 z       4   z    7 z    10 z     6
3 + -- - -- + 3 z  - ---- + ---- - ----- + 3 z  - -- + ---- - ----- + z  + 
     4    2            6      4      2             6     4      2
    a    a            a      a      a             a     a      a
 
       6      6    8
    2 z    5 z    z
>   ---- - ---- - --
      4      2     2
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 277]][a, z]
Out[14]=   
                                             2      2       2       2    3
    2    4    z    5 z   5 z   z      2   2 z    3 z    11 z    21 z    z
3 + -- + -- - -- - --- - --- - - - 9 z  + ---- + ---- - ----- - ----- - -- + 
     4    2    7    5     3    a            8      6      4       2      9
    a    a    a    a     a                 a      a      a       a      a
 
       3      3      3      3                       4      4       4       4
    3 z    6 z    6 z    6 z         3       4   6 z    2 z    31 z    49 z
>   ---- + ---- - ---- - ---- + 2 a z  + 20 z  - ---- - ---- + ----- + ----- - 
      7      5      3     a                        8      6      4       2
     a      a      a                              a      a      a       a
 
               5       5       5       5                       6      6
       2  4   z    10 z    38 z    18 z         5       6   4 z    9 z
>   2 a  z  + -- - ----- + ----- + ----- - 9 a z  - 23 z  + ---- - ---- - 
               9     7       3       a                        8      6
              a     a       a                                a      a
 
        6       6              7      7       7       7
    28 z    39 z     2  6   7 z    8 z    40 z    21 z         7      8
>   ----- - ----- + a  z  + ---- - ---- - ----- - ----- + 4 a z  + 8 z  + 
      4       2               7      5      3       a
     a       a               a      a      a
 
       8      8      8      9       9      9      10      10
    8 z    7 z    7 z    7 z    15 z    8 z    3 z     3 z
>   ---- + ---- + ---- + ---- + ----- + ---- + ----- + -----
      6      4      2      5      3      a       4       2
     a      a      a      a      a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 277]], Vassiliev[3][Knot[11, Alternating, 277]]}
Out[15]=   
{-2, -2}
In[16]:=
Kh[Knot[11, Alternating, 277]][q, t]
Out[16]=   
          3     1       3       1       6      3      7    6 q       3
12 q + 8 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 11 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   11 q  t + 10 q  t  + 11 q  t  + 9 q  t  + 10 q  t  + 5 q  t  + 9 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a277
K11a276
K11a276
K11a278
K11a278