n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 |
q-11 - q-10 - q-9 + q-8 - q-7 + q-5 + q-2 |
3 |
- q-21 + q-20 + q-19 - q-17 + q-15 - q-14 - q-13 + q-11 - q-10 + q-7 + q-3 |
4 |
q-34 - q-33 - q-32 + 2q-29 - q-28 + 2q-24 - q-23 - q-22 + q-19 - q-18 - q-17 + q-14 - q-13 + q-9 + q-4 |
5 |
- q-50 + q-49 + q-48 - q-45 - q-44 + q-42 - q-39 + q-36 + q-35 - q-33 + q-30 + q-29 - q-28 - q-27 + q-23 - q-22 - q-21 + q-17 - q-16 + q-11 + q-5 |
6 |
q-69 - q-68 - q-67 + q-64 + 2q-62 - q-61 - q-60 + 2q-55 - 2q-54 - q-53 + 2q-48 - q-47 - q-46 + q-43 + 2q-41 - q-40 - q-39 + q-36 + q-34 - q-33 - q-32 + q-27 - q-26 - q-25 + q-20 - q-19 + q-13 + q-6 |
7 |
- q-91 + q-90 + q-89 - q-86 - q-84 - q-83 + q-82 + q-81 + q-79 - q-78 - q-75 + q-74 + q-73 + q-71 - q-70 - q-69 - q-67 + q-66 + q-63 - q-62 - q-61 - q-59 + q-58 + q-56 + q-55 - q-54 - q-53 + q-50 + q-48 + q-47 - q-46 - q-45 + q-42 + q-39 - q-38 - q-37 + q-31 - q-30 - q-29 + q-23 - q-22 + q-15 + q-7 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | PD[Knot[3, 1]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 6, 4, 1], X[5, 2, 6, 3]] |
In[3]:= | GaussCode[Knot[3, 1]] |
Out[3]= | GaussCode[-1, 3, -2, 1, -3, 2] |
In[4]:= | DTCode[Knot[3, 1]] |
Out[4]= | DTCode[4, 6, 2] |
In[5]:= | br = BR[Knot[3, 1]] |
Out[5]= | BR[2, {-1, -1, -1}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {2, 3} |
In[7]:= | BraidIndex[Knot[3, 1]] |
Out[7]= | 2 |
In[8]:= | Show[DrawMorseLink[Knot[3, 1]]] |
|  |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[3, 1]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, 3, 1} |
In[10]:= | alex = Alexander[Knot[3, 1]][t] |
Out[10]= | 1
-1 + - + t
t |
In[11]:= | Conway[Knot[3, 1]][z] |
Out[11]= | 2
1 + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[3, 1]} |
In[13]:= | {KnotDet[Knot[3, 1]], KnotSignature[Knot[3, 1]]} |
Out[13]= | {3, -2} |
In[14]:= | Jones[Knot[3, 1]][q] |
Out[14]= | -4 -3 1
-q + q + -
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[3, 1]} |
In[16]:= | A2Invariant[Knot[3, 1]][q] |
Out[16]= | -14 -12 -8 2 -4 -2
-q - q + q + -- + q + q
6
q |
In[17]:= | HOMFLYPT[Knot[3, 1]][a, z] |
Out[17]= | 2 4 2 2
2 a - a + a z |
In[18]:= | Kauffman[Knot[3, 1]][a, z] |
Out[18]= | 2 4 3 5 2 2 4 2
-2 a - a + a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[3, 1]], Vassiliev[3][Knot[3, 1]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[3, 1]][q, t] |
Out[20]= | -3 1 1 1
q + - + ----- + -----
q 9 3 5 2
q t q t |
In[21]:= | ColouredJones[Knot[3, 1], 2][q] |
Out[21]= | -11 -10 -9 -8 -7 -5 -2
q - q - q + q - q + q + q |