© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.165
10165
3.1
31
    0.1
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 01   

Also known as "The Unknot".

Visit 01's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Acknowledgement

0.1
KnotPlot

Further views:   A toroidal bubble in glass
A toroidal bubble in glass

PD Presentation: Loop[1]

Gauss Code: {}

DT (Dowker-Thistlethwaite) Code:

Minimum Braid Representative:


Length is 0, width is 1
Braid index is 1

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
0 0 1 / NotAvailable NotAvailable

Alexander Polynomial: 1

Conway Polynomial: 1

Other knots with the same Alexander/Conway Polynomial: {K11n34, K11n42, ...}

Determinant and Signature: {1, 0}

Jones Polynomial: 1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-2 + 1 + q2

HOMFLY-PT Polynomial: 1

Kauffman Polynomial: 1

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 01. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0
j = 11
j = -11


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[0, 1]]
Out[2]=   
PD[Loop[1]]
In[3]:=
GaussCode[Knot[0, 1]]
Out[3]=   
GaussCode[]
In[4]:=
DTCode[Knot[0, 1]]
Out[4]=   
DTCode[]
In[5]:=
br = BR[Knot[0, 1]]
Out[5]=   
BR[1, {}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{1, 0}
In[7]:=
BraidIndex[Knot[0, 1]]
Out[7]=   
1
In[8]:=
Show[DrawMorseLink[Knot[0, 1]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[0, 1]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{, 0, 0, 1, NotAvailable, NotAvailable}
In[10]:=
alex = Alexander[Knot[0, 1]][t]
Out[10]=   
1
In[11]:=
Conway[Knot[0, 1]][z]
Out[11]=   
1
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[13]:=
{KnotDet[Knot[0, 1]], KnotSignature[Knot[0, 1]]}
Out[13]=   
{1, 0}
In[14]:=
Jones[Knot[0, 1]][q]
Out[14]=   
1
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[0, 1]}
In[16]:=
A2Invariant[Knot[0, 1]][q]
Out[16]=   
     -2    2
1 + q   + q
In[17]:=
HOMFLYPT[Knot[0, 1]][a, z]
Out[17]=   
1
In[18]:=
Kauffman[Knot[0, 1]][a, z]
Out[18]=   
1
In[19]:=
{Vassiliev[2][Knot[0, 1]], Vassiliev[3][Knot[0, 1]]}
Out[19]=   
{0, 0}
In[20]:=
Kh[Knot[0, 1]][q, t]
Out[20]=   
1
- + q
q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 01
10.165
10165
3.1
31