© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.164
10164
0.1
01
    10.165
KnotPlot
This page is passe. Go here instead!

   The Non Alternating Knot 10165   

Visit 10165's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10165's page at Knotilus!

Acknowledgement

10.165
KnotPlot

Warning. In 1974 K. Perko noticed that the knots labeled 10161 and 10162 in Rolfsen's tables are in fact the same. In our table we removed his 10162 and renumbered the subsequent knots, so that our 10 crossings total is 165, one less than Rolfsen's 166. Read more: 1 2 3 4.

PD Presentation: X1627 X7,18,8,19 X3948 X17,3,18,2 X5,15,6,14 X9,17,10,16 X15,11,16,10 X11,5,12,4 X20,14,1,13 X12,20,13,19

Gauss Code: {-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, -10, 9, 5, -7, 6, -4, 2, 10, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 14 18 16 4 -20 10 2 -12

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 2 3 / NotAvailable 1

Alexander Polynomial: - 2t-2 + 10t-1 - 15 + 10t - 2t2

Conway Polynomial: 1 + 2z2 - 2z4

Other knots with the same Alexander/Conway Polynomial: {915, K11n63, K11n101, ...}

Determinant and Signature: {39, 2}

Jones Polynomial: 2q - 4q2 + 6q3 - 6q4 + 7q5 - 6q6 + 4q7 - 3q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 2q2 - q4 + 2q8 + 2q12 - 2q20 + q22 - q24 - q26 + q28

HOMFLY-PT Polynomial: a-8z2 - a-6 - a-6z2 - a-6z4 + a-4 - a-4z4 + a-2 + 2a-2z2

Kauffman Polynomial: 2a-10z2 - 3a-10z4 + a-10z6 - a-9z + 10a-9z3 - 11a-9z5 + 3a-9z7 + 2a-8z2 - 2a-8z4 - 4a-8z6 + 2a-8z8 - 5a-7z + 18a-7z3 - 22a-7z5 + 7a-7z7 + a-6 - 2a-6z2 - 2a-6z4 - 2a-6z6 + 2a-6z8 - 5a-5z + 11a-5z3 - 10a-5z5 + 4a-5z7 + a-4 + a-4z2 - 3a-4z4 + 3a-4z6 - a-3z + 3a-3z3 + a-3z5 - a-2 + 3a-2z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10165. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19        1
j = 17       2 
j = 15      21 
j = 13     42  
j = 11    32   
j = 9   34    
j = 7  33     
j = 5 13      
j = 313       
j = 12        

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q - 4q3 + 8q4 - 17q6 + 20q7 + 5q8 - 33q9 + 26q10 + 15q11 - 40q12 + 19q13 + 24q14 - 38q15 + 7q16 + 27q17 - 27q18 - 3q19 + 22q20 - 11q21 - 7q22 + 10q23 - q24 - 3q25 + q26
3 2q - 4q2 + 2q3 + 3q4 + 6q5 - 18q6 - 9q7 + 30q8 + 28q9 - 47q10 - 53q11 + 55q12 + 90q13 - 59q14 - 117q15 + 44q16 + 145q17 - 32q18 - 150q19 + 5q20 + 155q21 + 10q22 - 140q23 - 33q24 + 127q25 + 47q26 - 104q27 - 66q28 + 81q29 + 79q30 - 56q31 - 84q32 + 23q33 + 88q34 + 2q35 - 73q36 - 28q37 + 57q38 + 39q39 - 31q40 - 42q41 + 11q42 + 31q43 + 4q44 - 20q45 - 7q46 + 8q47 + 5q48 - q49 - 3q50 + q51
4 1 - 4q2 + 3q3 + 10q4 - 6q5 - 14q6 - 20q7 + 25q8 + 71q9 - 7q10 - 87q11 - 124q12 + 48q13 + 266q14 + 104q15 - 194q16 - 401q17 - 67q18 + 520q19 + 405q20 - 161q21 - 718q22 - 372q23 + 614q24 + 718q25 + 56q26 - 839q27 - 674q28 + 506q29 + 830q30 + 284q31 - 748q32 - 798q33 + 339q34 + 745q35 + 416q36 - 570q37 - 787q38 + 183q39 + 589q40 + 490q41 - 366q42 - 723q43 + 14q44 + 392q45 + 541q46 - 113q47 - 595q48 - 166q49 + 131q50 + 508q51 + 148q52 - 348q53 - 250q54 - 148q55 + 315q56 + 278q57 - 47q58 - 142q59 - 285q60 + 44q61 + 188q62 + 120q63 + 51q64 - 197q65 - 93q66 + 13q67 + 77q68 + 121q69 - 39q70 - 54q71 - 50q72 - 8q73 + 59q74 + 13q75 + 2q76 - 18q77 - 17q78 + 8q79 + 3q80 + 5q81 - q82 - 3q83 + q84
5 2q-1 - 4 + 2q + 2q2 + q3 + 4q4 - 10q5 - 29q6 + 11q7 + 49q8 + 49q9 + 8q10 - 111q11 - 191q12 - 25q13 + 246q14 + 389q15 + 182q16 - 368q17 - 806q18 - 511q19 + 467q20 + 1313q21 + 1100q22 - 339q23 - 1898q24 - 1947q25 - 36q26 + 2353q27 + 2924q28 + 734q29 - 2566q30 - 3865q31 - 1630q32 + 2427q33 + 4613q34 + 2587q35 - 2047q36 - 4997q37 - 3408q38 + 1437q39 + 5094q40 + 4012q41 - 871q42 - 4896q43 - 4307q44 + 314q45 + 4581q46 + 4412q47 + 51q48 - 4181q49 - 4337q50 - 378q51 + 3816q52 + 4218q53 + 602q54 - 3419q55 - 4073q56 - 886q57 + 3029q58 + 3955q59 + 1174q60 - 2558q61 - 3798q62 - 1551q63 + 2000q64 + 3600q65 + 1931q66 - 1346q67 - 3252q68 - 2277q69 + 583q70 + 2766q71 + 2499q72 + 174q73 - 2089q74 - 2484q75 - 889q76 + 1279q77 + 2252q78 + 1362q79 - 446q80 - 1711q81 - 1581q82 - 299q83 + 1050q84 + 1449q85 + 778q86 - 330q87 - 1063q88 - 957q89 - 223q90 + 539q91 + 825q92 + 539q93 - 63q94 - 514q95 - 560q96 - 253q97 + 160q98 + 413q99 + 346q100 + 75q101 - 173q102 - 275q103 - 192q104 + 6q105 + 151q106 + 158q107 + 73q108 - 27q109 - 96q110 - 80q111 - 15q112 + 33q113 + 40q114 + 26q115 + 4q116 - 21q117 - 15q118 - 2q119 + 3q120 + 3q121 + 5q122 - q123 - 3q124 + q125


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 165]]
Out[2]=   
PD[X[1, 6, 2, 7], X[7, 18, 8, 19], X[3, 9, 4, 8], X[17, 3, 18, 2], 
 
>   X[5, 15, 6, 14], X[9, 17, 10, 16], X[15, 11, 16, 10], X[11, 5, 12, 4], 
 
>   X[20, 14, 1, 13], X[12, 20, 13, 19]]
In[3]:=
GaussCode[Knot[10, 165]]
Out[3]=   
GaussCode[-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, -10, 9, 5, -7, 6, -4, 2, 10, 
 
>   -9]
In[4]:=
DTCode[Knot[10, 165]]
Out[4]=   
DTCode[6, 8, 14, 18, 16, 4, -20, 10, 2, -12]
In[5]:=
br = BR[Knot[10, 165]]
Out[5]=   
BR[4, {1, 1, 2, -1, -3, 2, -1, 2, 3, 3, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 165]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 165]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 165]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 2, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 165]][t]
Out[10]=   
      2    10             2
-15 - -- + -- + 10 t - 2 t
       2   t
      t
In[11]:=
Conway[Knot[10, 165]][z]
Out[11]=   
       2      4
1 + 2 z  - 2 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[9, 15], Knot[10, 165], Knot[11, NonAlternating, 63], 
 
>   Knot[11, NonAlternating, 101]}
In[13]:=
{KnotDet[Knot[10, 165]], KnotSignature[Knot[10, 165]]}
Out[13]=   
{39, 2}
In[14]:=
Jones[Knot[10, 165]][q]
Out[14]=   
         2      3      4      5      6      7      8    9
2 q - 4 q  + 6 q  - 6 q  + 7 q  - 6 q  + 4 q  - 3 q  + q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 165]}
In[16]:=
A2Invariant[Knot[10, 165]][q]
Out[16]=   
   2    4      8      12      20    22    24    26    28
2 q  - q  + 2 q  + 2 q   - 2 q   + q   - q   - q   + q
In[17]:=
HOMFLYPT[Knot[10, 165]][a, z]
Out[17]=   
                    2    2      2    4    4
  -6    -4    -2   z    z    2 z    z    z
-a   + a   + a   + -- - -- + ---- - -- - --
                    8    6     2     6    4
                   a    a     a     a    a
In[18]:=
Kauffman[Knot[10, 165]][a, z]
Out[18]=   
                                           2      2      2    2      2
 -6    -4    -2   z    5 z   5 z   z    2 z    2 z    2 z    z    3 z
a   + a   - a   - -- - --- - --- - -- + ---- + ---- - ---- + -- + ---- + 
                   9    7     5     3    10      8      6     4     2
                  a    a     a     a    a       a      a     a     a
 
        3       3       3      3      4      4      4      4       5       5
    10 z    18 z    11 z    3 z    3 z    2 z    2 z    3 z    11 z    22 z
>   ----- + ----- + ----- + ---- - ---- - ---- - ---- - ---- - ----- - ----- - 
      9       7       5       3     10      8      6      4      9       7
     a       a       a       a     a       a      a      a      a       a
 
        5    5    6       6      6      6      7      7      7      8      8
    10 z    z    z     4 z    2 z    3 z    3 z    7 z    4 z    2 z    2 z
>   ----- + -- + --- - ---- - ---- + ---- + ---- + ---- + ---- + ---- + ----
      5      3    10     8      6      4      9      7      5      8      6
     a      a    a      a      a      a      a      a      a      a      a
In[19]:=
{Vassiliev[2][Knot[10, 165]], Vassiliev[3][Knot[10, 165]]}
Out[19]=   
{2, 3}
In[20]:=
Kh[Knot[10, 165]][q, t]
Out[20]=   
       3      3      5        5  2      7  2      7  3      9  3      9  4
2 q + q  + 3 q  t + q  t + 3 q  t  + 3 q  t  + 3 q  t  + 3 q  t  + 4 q  t  + 
 
       11  4      11  5      13  5      13  6      15  6    15  7      17  7
>   3 q   t  + 2 q   t  + 4 q   t  + 2 q   t  + 2 q   t  + q   t  + 2 q   t  + 
 
     19  8
>   q   t
In[21]:=
ColouredJones[Knot[10, 165], 2][q]
Out[21]=   
       3      4       6       7      8       9       10       11       12
q - 4 q  + 8 q  - 17 q  + 20 q  + 5 q  - 33 q  + 26 q   + 15 q   - 40 q   + 
 
        13       14       15      16       17       18      19       20
>   19 q   + 24 q   - 38 q   + 7 q   + 27 q   - 27 q   - 3 q   + 22 q   - 
 
        21      22       23    24      25    26
>   11 q   - 7 q   + 10 q   - q   - 3 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10165
10.164
10164
0.1
01