© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1035Visit 1035's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1035's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X7,10,8,11 X3948 X9,3,10,2 X5,16,6,17 X11,1,12,20 X13,19,14,18 X17,15,18,14 X19,13,20,12 X15,6,16,7 |
Gauss Code: | {-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 16 10 2 20 18 6 14 12 |
Minimum Braid Representative:
Length is 11, width is 6 Braid index is 6 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-2 - 12t-1 + 21 - 12t + 2t2 |
Conway Polynomial: | 1 - 4z2 + 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {49, 0} |
Jones Polynomial: | q-4 - 2q-3 + 4q-2 - 6q-1 + 8 - 8q + 7q2 - 6q3 + 4q4 - 2q5 + q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1022, ...} |
A2 (sl(3)) Invariant: | q-14 + q-12 - q-10 + q-8 - 2q-4 + 2q-2 + q2 - q6 + q8 - 2q10 + q14 - q16 + q18 + q20 |
HOMFLY-PT Polynomial: | a-6 - a-4 - 2a-4z2 + a-2z4 + 1 + z4 - a2 - 2a2z2 + a4 |
Kauffman Polynomial: | - a-6 + 4a-6z2 - 4a-6z4 + a-6z6 - 2a-5z + 6a-5z3 - 7a-5z5 + 2a-5z7 - a-4 + 3a-4z2 - 5a-4z6 + 2a-4z8 - a-3z + 5a-3z3 - 6a-3z5 + a-3z9 - 3a-2z2 + 10a-2z4 - 11a-2z6 + 4a-2z8 + a-1z - a-1z5 + a-1z9 + 1 - 3z2 + 5z4 - 3z6 + 2z8 + az - 2az3 + 2az7 + a2 - 3a2z2 + 2a2z6 + a3z - 3a3z3 + 2a3z5 + a4 - 2a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-4, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1035. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 2q-11 + 5q-9 - 7q-8 + q-7 + 12q-6 - 19q-5 + 5q-4 + 24q-3 - 36q-2 + 7q-1 + 39 - 47q + 3q2 + 46q3 - 45q4 - 4q5 + 44q6 - 32q7 - 11q8 + 34q9 - 16q10 - 13q11 + 19q12 - 4q13 - 8q14 + 6q15 - 2q17 + q18 |
3 | q-24 - 2q-23 + q-21 + 4q-20 - 5q-19 - 3q-18 + 3q-17 + 7q-16 - 6q-15 - 4q-14 + 5q-13 + 3q-12 - 12q-11 + 9q-10 + 16q-9 - 17q-8 - 33q-7 + 31q-6 + 52q-5 - 39q-4 - 77q-3 + 45q-2 + 96q-1 - 38 - 117q + 33q2 + 126q3 - 19q4 - 130q5 + 4q6 + 127q7 + 12q8 - 118q9 - 31q10 + 107q11 + 46q12 - 88q13 - 61q14 + 68q15 + 70q16 - 45q17 - 73q18 + 23q19 + 67q20 - 4q21 - 54q22 - 11q23 + 42q24 + 13q25 - 23q26 - 16q27 + 14q28 + 10q29 - 5q30 - 7q31 + 3q32 + 2q33 - 2q35 + q36 |
4 | q-40 - 2q-39 + q-37 + 6q-35 - 9q-34 - q-33 + q-32 - q-31 + 23q-30 - 19q-29 - 4q-28 - 8q-27 - 11q-26 + 56q-25 - 20q-24 + 2q-23 - 33q-22 - 53q-21 + 94q-20 + 6q-19 + 51q-18 - 64q-17 - 162q-16 + 94q-15 + 58q-14 + 185q-13 - 54q-12 - 331q-11 + 5q-10 + 76q-9 + 393q-8 + 53q-7 - 484q-6 - 155q-5 + 7q-4 + 577q-3 + 220q-2 - 537q-1 - 283 - 128q + 646q2 + 359q3 - 491q4 - 320q5 - 251q6 + 604q7 + 417q8 - 392q9 - 276q10 - 333q11 + 490q12 + 412q13 - 259q14 - 186q15 - 385q16 + 325q17 + 357q18 - 103q19 - 57q20 - 398q21 + 133q22 + 247q23 + 25q24 + 94q25 - 330q26 - 27q27 + 89q28 + 66q29 + 209q30 - 189q31 - 87q32 - 46q33 + 16q34 + 217q35 - 48q36 - 47q37 - 91q38 - 47q39 + 137q40 + 15q41 + 9q42 - 56q43 - 57q44 + 52q45 + 12q46 + 23q47 - 15q48 - 30q49 + 14q50 + 10q52 - q53 - 9q54 + 4q55 - q56 + 2q57 - 2q59 + q60 |
5 | q-60 - 2q-59 + q-57 + 2q-55 + 2q-54 - 7q-53 - 3q-52 + 4q-51 + 10q-49 + 9q-48 - 17q-47 - 16q-46 - 2q-45 + 3q-44 + 28q-43 + 34q-42 - 20q-41 - 48q-40 - 36q-39 - 4q-38 + 66q-37 + 93q-36 + 10q-35 - 96q-34 - 138q-33 - 63q-32 + 119q-31 + 244q-30 + 129q-29 - 136q-28 - 356q-27 - 288q-26 + 131q-25 + 537q-24 + 484q-23 - 68q-22 - 699q-21 - 808q-20 - 87q-19 + 904q-18 + 1172q-17 + 334q-16 - 1013q-15 - 1613q-14 - 701q-13 + 1068q-12 + 2040q-11 + 1135q-10 - 997q-9 - 2417q-8 - 1607q-7 + 843q-6 + 2667q-5 + 2062q-4 - 597q-3 - 2830q-2 - 2418q-1 + 339 + 2832q + 2684q2 - 57q3 - 2786q4 - 2829q5 - 156q6 + 2637q7 + 2881q8 + 356q9 - 2471q10 - 2866q11 - 501q12 + 2269q13 + 2783q14 + 642q15 - 2026q16 - 2679q17 - 774q18 + 1763q19 + 2518q20 + 902q21 - 1437q22 - 2322q23 - 1034q24 + 1094q25 + 2062q26 + 1124q27 - 708q28 - 1751q29 - 1166q30 + 340q31 + 1376q32 + 1129q33 - 4q34 - 976q35 - 1005q36 - 237q37 + 569q38 + 791q39 + 384q40 - 213q41 - 531q42 - 408q43 - 44q44 + 246q45 + 327q46 + 208q47 - 10q48 - 199q49 - 237q50 - 142q51 + 22q52 + 198q53 + 227q54 + 82q55 - 104q56 - 199q57 - 166q58 + 5q59 + 163q60 + 160q61 + 54q62 - 75q63 - 140q64 - 79q65 + 27q66 + 83q67 + 73q68 + 14q69 - 52q70 - 49q71 - 13q72 + 11q73 + 30q74 + 20q75 - 9q76 - 16q77 - 2q78 - 3q79 + 3q80 + 9q81 - 2q82 - 5q83 + 2q84 - q86 + 2q87 - 2q89 + q90 |
6 | q-84 - 2q-83 + q-81 + 2q-79 - 2q-78 + 4q-77 - 9q-76 + 5q-74 - 2q-73 + 10q-72 - 2q-71 + 11q-70 - 31q-69 - 6q-68 + 11q-67 - 6q-66 + 29q-65 + 13q-64 + 33q-63 - 76q-62 - 27q-61 + 5q-60 - 20q-59 + 62q-58 + 59q-57 + 87q-56 - 147q-55 - 73q-54 - 24q-53 - 53q-52 + 121q-51 + 163q-50 + 181q-49 - 262q-48 - 197q-47 - 117q-46 - 94q-45 + 284q-44 + 442q-43 + 375q-42 - 484q-41 - 579q-40 - 474q-39 - 223q-38 + 704q-37 + 1215q-36 + 984q-35 - 728q-34 - 1495q-33 - 1584q-32 - 883q-31 + 1304q-30 + 2875q-29 + 2671q-28 - 416q-27 - 2838q-26 - 3925q-25 - 2894q-24 + 1360q-23 + 5217q-22 + 5925q-21 + 1384q-20 - 3691q-19 - 7105q-18 - 6647q-17 - 147q-16 + 7055q-15 + 10062q-14 + 4926q-13 - 2930q-12 - 9671q-11 - 11136q-10 - 3324q-9 + 7173q-8 + 13375q-7 + 8990q-6 - 540q-5 - 10393q-4 - 14545q-3 - 6869q-2 + 5625q-1 + 14709 + 11893q + 2209q2 - 9452q3 - 15934q4 - 9333q5 + 3582q6 + 14349q7 + 13030q8 + 4177q9 - 7912q10 - 15733q11 - 10414q12 + 1892q13 + 13222q14 + 12954q15 + 5315q16 - 6362q17 - 14752q18 - 10720q19 + 433q20 + 11709q21 + 12356q22 + 6227q23 - 4584q24 - 13248q25 - 10792q26 - 1301q27 + 9566q28 + 11336q29 + 7252q30 - 2188q31 - 10960q32 - 10533q33 - 3394q34 + 6528q35 + 9509q36 + 8017q37 + 696q38 - 7647q39 - 9364q40 - 5203q41 + 2897q42 + 6564q43 + 7698q44 + 3198q45 - 3692q46 - 6862q47 - 5705q48 - 285q49 + 2917q50 + 5792q51 + 4179q52 - 267q53 - 3511q54 - 4397q55 - 1803q56 - 157q57 + 2903q58 + 3221q59 + 1387q60 - 695q61 - 2050q62 - 1367q63 - 1460q64 + 531q65 + 1289q66 + 1126q67 + 454q68 - 218q69 - 79q70 - 1049q71 - 315q72 - 79q73 + 151q74 + 174q75 + 281q76 + 653q77 - 181q78 - 39q79 - 304q80 - 310q81 - 336q82 - 21q83 + 522q84 + 157q85 + 284q86 - 6q87 - 160q88 - 378q89 - 233q90 + 153q91 + 50q92 + 235q93 + 131q94 + 53q95 - 170q96 - 162q97 + 6q98 - 55q99 + 75q100 + 72q101 + 80q102 - 38q103 - 55q104 + 7q105 - 43q106 + 5q107 + 14q108 + 36q109 - 8q110 - 14q111 + 12q112 - 13q113 - 2q114 - q115 + 11q116 - 3q117 - 6q118 + 6q119 - 2q120 - q122 + 2q123 - 2q125 + q126 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 35]] |
Out[2]= | PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[5, 16, 6, 17], X[11, 1, 12, 20], X[13, 19, 14, 18], X[17, 15, 18, 14], > X[19, 13, 20, 12], X[15, 6, 16, 7]] |
In[3]:= | GaussCode[Knot[10, 35]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, > 6] |
In[4]:= | DTCode[Knot[10, 35]] |
Out[4]= | DTCode[4, 8, 16, 10, 2, 20, 18, 6, 14, 12] |
In[5]:= | br = BR[Knot[10, 35]] |
Out[5]= | BR[6, {-1, 2, -1, 2, 3, -2, -4, 3, 5, -4, 5}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {6, 11} |
In[7]:= | BraidIndex[Knot[10, 35]] |
Out[7]= | 6 |
In[8]:= | Show[DrawMorseLink[Knot[10, 35]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 35]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 35]][t] |
Out[10]= | 2 12 2 21 + -- - -- - 12 t + 2 t 2 t t |
In[11]:= | Conway[Knot[10, 35]][z] |
Out[11]= | 2 4 1 - 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 35]} |
In[13]:= | {KnotDet[Knot[10, 35]], KnotSignature[Knot[10, 35]]} |
Out[13]= | {49, 0} |
In[14]:= | Jones[Knot[10, 35]][q] |
Out[14]= | -4 2 4 6 2 3 4 5 6 8 + q - -- + -- - - - 8 q + 7 q - 6 q + 4 q - 2 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 22], Knot[10, 35]} |
In[16]:= | A2Invariant[Knot[10, 35]][q] |
Out[16]= | -14 -12 -10 -8 2 2 2 6 8 10 14 16 18 q + q - q + q - -- + -- + q - q + q - 2 q + q - q + q + 4 2 q q 20 > q |
In[17]:= | HOMFLYPT[Knot[10, 35]][a, z] |
Out[17]= | 2 4 -6 -4 2 4 2 z 2 2 4 z 1 + a - a - a + a - ---- - 2 a z + z + -- 4 2 a a |
In[18]:= | Kauffman[Knot[10, 35]][a, z] |
Out[18]= | 2 2 -6 -4 2 4 2 z z z 3 2 4 z 3 z 1 - a - a + a + a - --- - -- + - + a z + a z - 3 z + ---- + ---- - 5 3 a 6 4 a a a a 2 3 3 4 3 z 2 2 4 2 6 z 5 z 3 3 3 4 4 z > ---- - 3 a z - 2 a z + ---- + ---- - 2 a z - 3 a z + 5 z - ---- + 2 5 3 6 a a a a 4 5 5 5 6 6 6 10 z 4 4 7 z 6 z z 3 5 6 z 5 z 11 z > ----- + a z - ---- - ---- - -- + 2 a z - 3 z + -- - ---- - ----- + 2 5 3 a 6 4 2 a a a a a a 7 8 8 9 9 2 6 2 z 7 8 2 z 4 z z z > 2 a z + ---- + 2 a z + 2 z + ---- + ---- + -- + -- 5 4 2 3 a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 35]], Vassiliev[3][Knot[10, 35]]} |
Out[19]= | {-4, -2} |
In[20]:= | Kh[Knot[10, 35]][q, t] |
Out[20]= | 5 1 1 1 3 1 3 3 3 - + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t + 4 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 7 4 9 4 9 5 11 5 > 3 q t + 4 q t + 3 q t + 3 q t + q t + 3 q t + q t + q t + 13 6 > q t |
In[21]:= | ColouredJones[Knot[10, 35], 2][q] |
Out[21]= | -12 2 5 7 -7 12 19 5 24 36 7 2 39 + q - --- + -- - -- + q + -- - -- + -- + -- - -- + - - 47 q + 3 q + 11 9 8 6 5 4 3 2 q q q q q q q q q 3 4 5 6 7 8 9 10 11 > 46 q - 45 q - 4 q + 44 q - 32 q - 11 q + 34 q - 16 q - 13 q + 12 13 14 15 17 18 > 19 q - 4 q - 8 q + 6 q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1035 |
|