© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1036Visit 1036's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1036's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,16,8,17 X11,20,12,1 X13,18,14,19 X17,14,18,15 X19,12,20,13 X15,6,16,7 |
Gauss Code: | {-1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 16 2 20 18 6 14 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 3t-2 + 13t-1 - 19 + 13t - 3t2 |
Conway Polynomial: | 1 + z2 - 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11a230, K11n29, ...} |
Determinant and Signature: | {51, -2} |
Jones Polynomial: | q-9 - 3q-8 + 4q-7 - 6q-6 + 8q-5 - 8q-4 + 8q-3 - 6q-2 + 4q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-28 - q-26 - q-24 + q-22 - 2q-20 + q-16 + 2q-12 + q-8 - 2q-4 + 2q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 - a2 - a2z2 - a2z4 + 2a4 + a4z2 - a4z4 - a6 - a6z2 - a6z4 + a8z2 |
Kauffman Polynomial: | 1 - 2z2 + z4 + az - 3az3 + 2az5 + a2 - 3a2z2 + 2a2z6 + a3z - 2a3z3 + 2a3z7 + 2a4 - 6a4z2 + 6a4z4 - 3a4z6 + 2a4z8 - 3a5z + 8a5z3 - 6a5z5 + a5z7 + a5z9 + a6 - 8a6z2 + 18a6z4 - 16a6z6 + 5a6z8 - 4a7z + 16a7z3 - 15a7z5 + 2a7z7 + a7z9 - 2a8z2 + 8a8z4 - 10a8z6 + 3a8z8 - a9z + 9a9z3 - 11a9z5 + 3a9z7 + a10z2 - 3a10z4 + a10z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1036. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-26 - 3q-25 + 9q-23 - 10q-22 - 6q-21 + 23q-20 - 13q-19 - 20q-18 + 36q-17 - 9q-16 - 36q-15 + 44q-14 - q-13 - 47q-12 + 44q-11 + 7q-10 - 47q-9 + 35q-8 + 9q-7 - 34q-6 + 22q-5 + 5q-4 - 18q-3 + 12q-2 + q-1 - 7 + 5q - 2q3 + q4 |
3 | q-51 - 3q-50 + 5q-48 + 4q-47 - 10q-46 - 12q-45 + 16q-44 + 22q-43 - 16q-42 - 38q-41 + 12q-40 + 52q-39 + 2q-38 - 67q-37 - 15q-36 + 67q-35 + 40q-34 - 68q-33 - 56q-32 + 55q-31 + 75q-30 - 40q-29 - 88q-28 + 22q-27 + 95q-26 + q-25 - 105q-24 - 16q-23 + 101q-22 + 39q-21 - 103q-20 - 48q-19 + 88q-18 + 63q-17 - 79q-16 - 58q-15 + 54q-14 + 57q-13 - 39q-12 - 42q-11 + 21q-10 + 28q-9 - 12q-8 - 10q-7 + 4q-6 + 3q-5 - 6q-4 + 7q-3 + 3q-2 - 6q-1 - 6 + 8q + 3q2 - 3q3 - 5q4 + 4q5 + q6 - 2q8 + q9 |
4 | q-84 - 3q-83 + 5q-81 + 4q-79 - 17q-78 - 5q-77 + 17q-76 + 8q-75 + 28q-74 - 47q-73 - 36q-72 + 20q-71 + 22q-70 + 95q-69 - 60q-68 - 83q-67 - 19q-66 - 6q-65 + 188q-64 - 18q-63 - 86q-62 - 70q-61 - 106q-60 + 222q-59 + 34q-58 - 47q-56 - 227q-55 + 154q-54 + 5q-53 + 121q-52 + 89q-51 - 275q-50 + 35q-49 - 135q-48 + 193q-47 + 284q-46 - 226q-45 - 63q-44 - 329q-43 + 192q-42 + 466q-41 - 122q-40 - 122q-39 - 509q-38 + 153q-37 + 599q-36 - 7q-35 - 150q-34 - 644q-33 + 88q-32 + 671q-31 + 114q-30 - 135q-29 - 717q-28 - 14q-27 + 644q-26 + 220q-25 - 42q-24 - 681q-23 - 141q-22 + 489q-21 + 260q-20 + 97q-19 - 516q-18 - 213q-17 + 264q-16 + 194q-15 + 190q-14 - 290q-13 - 187q-12 + 83q-11 + 80q-10 + 185q-9 - 115q-8 - 107q-7 + 2q-6 - q-5 + 123q-4 - 30q-3 - 41q-2 - 12q-1 - 26 + 61q - 4q2 - 8q3 - 6q4 - 21q5 + 23q6 + q8 - q9 - 9q10 + 6q11 + q13 - 2q15 + q16 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 36]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[7, 16, 8, 17], X[11, 20, 12, 1], X[13, 18, 14, 19], X[17, 14, 18, 15], > X[19, 12, 20, 13], X[15, 6, 16, 7]] |
In[3]:= | GaussCode[Knot[10, 36]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, > 6] |
In[4]:= | DTCode[Knot[10, 36]] |
Out[4]= | DTCode[4, 8, 10, 16, 2, 20, 18, 6, 14, 12] |
In[5]:= | br = BR[Knot[10, 36]] |
Out[5]= | BR[5, {-1, -1, -1, -2, 1, -2, -3, 2, -3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 36]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 36]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 36]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 36]][t] |
Out[10]= | 3 13 2 -19 - -- + -- + 13 t - 3 t 2 t t |
In[11]:= | Conway[Knot[10, 36]][z] |
Out[11]= | 2 4 1 + z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 36], Knot[11, Alternating, 230], Knot[11, NonAlternating, 29]} |
In[13]:= | {KnotDet[Knot[10, 36]], KnotSignature[Knot[10, 36]]} |
Out[13]= | {51, -2} |
In[14]:= | Jones[Knot[10, 36]][q] |
Out[14]= | -9 3 4 6 8 8 8 6 4 -2 + q - -- + -- - -- + -- - -- + -- - -- + - + q 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 36]} |
In[16]:= | A2Invariant[Knot[10, 36]][q] |
Out[16]= | -28 -26 -24 -22 2 -16 2 -8 2 2 4 q - q - q + q - --- + q + --- + q - -- + -- + q 20 12 4 2 q q q q |
In[17]:= | HOMFLYPT[Knot[10, 36]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 6 2 8 2 2 4 4 4 6 4 1 - a + 2 a - a + z - a z + a z - a z + a z - a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 36]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 2 2 2 1 + a + 2 a + a + a z + a z - 3 a z - 4 a z - a z - 2 z - 3 a z - 4 2 6 2 8 2 10 2 3 3 3 5 3 > 6 a z - 8 a z - 2 a z + a z - 3 a z - 2 a z + 8 a z + 7 3 9 3 4 4 4 6 4 8 4 10 4 > 16 a z + 9 a z + z + 6 a z + 18 a z + 8 a z - 3 a z + 5 5 5 7 5 9 5 2 6 4 6 6 6 > 2 a z - 6 a z - 15 a z - 11 a z + 2 a z - 3 a z - 16 a z - 8 6 10 6 3 7 5 7 7 7 9 7 4 8 > 10 a z + a z + 2 a z + a z + 2 a z + 3 a z + 2 a z + 6 8 8 8 5 9 7 9 > 5 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 36]], Vassiliev[3][Knot[10, 36]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[10, 36]][q, t] |
Out[20]= | 2 3 1 2 1 2 2 4 2 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 q q t q t q t q t q t q t q t 4 4 4 4 4 4 2 4 t > ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - + q t + 11 4 9 4 9 3 7 3 7 2 5 2 5 3 q q t q t q t q t q t q t q t q t 3 2 > q t |
In[21]:= | ColouredJones[Knot[10, 36], 2][q] |
Out[21]= | -26 3 9 10 6 23 13 20 36 9 36 44 -7 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 25 23 22 21 20 19 18 17 16 15 14 q q q q q q q q q q q -13 47 44 7 47 35 9 34 22 5 18 12 1 > q - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- + -- + - + 5 q - 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 3 4 > 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1036 |
|