© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1034Visit 1034's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1034's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X13,17,14,16 X5,15,6,14 X15,7,16,6 X9,1,10,20 X11,19,12,18 X17,13,18,12 X19,11,20,10 X7283 |
Gauss Code: | {-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -7, 8, -3, 4, -5, 3, -8, 7, -9, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 20 18 16 6 12 10 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 9t-1 + 13 - 9t + 3t2 |
Conway Polynomial: | 1 + 3z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {10135, ...} |
Determinant and Signature: | {37, 0} |
Jones Polynomial: | - q-3 + 2q-2 - 3q-1 + 5 - 5q + 6q2 - 5q3 + 4q4 - 3q5 + 2q6 - q7 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-10 - q-4 + 2q-2 + 1 + q2 + q4 + q8 + q14 - q16 - q22 |
HOMFLY-PT Polynomial: | - a-6 - a-6z2 + a-4 + 2a-4z2 + a-4z4 + a-2z2 + a-2z4 + 2 + 2z2 + z4 - a2 - a2z2 |
Kauffman Polynomial: | - 3a-7z + 7a-7z3 - 5a-7z5 + a-7z7 + a-6 - 6a-6z2 + 14a-6z4 - 10a-6z6 + 2a-6z8 - 4a-5z + 12a-5z3 - 6a-5z5 - 2a-5z7 + a-5z9 + a-4 - 8a-4z2 + 20a-4z4 - 17a-4z6 + 4a-4z8 - a-3z + 5a-3z3 - 5a-3z5 - a-3z7 + a-3z9 - 3a-2z2 + 4a-2z4 - 5a-2z6 + 2a-2z8 - a-1z3 - 2a-1z5 + 2a-1z7 + 2 - 3z2 + 2z6 - az + 2az5 + a2 - 2a2z2 + 2a2z4 - a3z + a3z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1034. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-9 - 2q-8 + 4q-6 - 6q-5 + q-4 + 7q-3 - 10q-2 + 4q-1 + 8 - 14q + 8q2 + 9q3 - 18q4 + 8q5 + 13q6 - 20q7 + 5q8 + 15q9 - 18q10 + q11 + 15q12 - 13q13 - 3q14 + 12q15 - 6q16 - 4q17 + 6q18 - q19 - 2q20 + q21 |
3 | - q-18 + 2q-17 - q-15 - 3q-14 + 5q-13 + 2q-12 - 5q-11 - 6q-10 + 7q-9 + 9q-8 - 8q-7 - 12q-6 + 5q-5 + 18q-4 - 3q-3 - 19q-2 - 7q-1 + 27 + 7q - 19q2 - 20q3 + 25q4 + 16q5 - 14q6 - 21q7 + 17q8 + 12q9 - 9q10 - 11q11 + 11q12 + q13 - 7q14 + 2q15 + 7q16 - 9q17 - 5q18 + 13q19 + 6q20 - 17q21 - 8q22 + 20q23 + 10q24 - 20q25 - 14q26 + 18q27 + 17q28 - 13q29 - 19q30 + 9q31 + 16q32 - 2q33 - 14q34 - q35 + 9q36 + 3q37 - 5q38 - 2q39 + q40 + 2q41 - q42 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 34]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[13, 17, 14, 16], X[5, 15, 6, 14], > X[15, 7, 16, 6], X[9, 1, 10, 20], X[11, 19, 12, 18], X[17, 13, 18, 12], > X[19, 11, 20, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 34]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -7, 8, -3, 4, -5, 3, -8, 7, -9, > 6] |
In[4]:= | DTCode[Knot[10, 34]] |
Out[4]= | DTCode[4, 8, 14, 2, 20, 18, 16, 6, 12, 10] |
In[5]:= | br = BR[Knot[10, 34]] |
Out[5]= | BR[5, {1, 1, 1, 2, -1, 2, 3, -2, -4, 3, -4, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 34]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 34]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 34]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 34]][t] |
Out[10]= | 3 9 2 13 + -- - - - 9 t + 3 t 2 t t |
In[11]:= | Conway[Knot[10, 34]][z] |
Out[11]= | 2 4 1 + 3 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 34], Knot[10, 135]} |
In[13]:= | {KnotDet[Knot[10, 34]], KnotSignature[Knot[10, 34]]} |
Out[13]= | {37, 0} |
In[14]:= | Jones[Knot[10, 34]][q] |
Out[14]= | -3 2 3 2 3 4 5 6 7 5 - q + -- - - - 5 q + 6 q - 5 q + 4 q - 3 q + 2 q - q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 34]} |
In[16]:= | A2Invariant[Knot[10, 34]][q] |
Out[16]= | -10 -4 2 2 4 8 14 16 22 1 - q - q + -- + q + q + q + q - q - q 2 q |
In[17]:= | HOMFLYPT[Knot[10, 34]][a, z] |
Out[17]= | 2 2 2 4 4 -6 -4 2 2 z 2 z z 2 2 4 z z 2 - a + a - a + 2 z - -- + ---- + -- - a z + z + -- + -- 6 4 2 4 2 a a a a a |
In[18]:= | Kauffman[Knot[10, 34]][a, z] |
Out[18]= | 2 2 2 -6 -4 2 3 z 4 z z 3 2 6 z 8 z 3 z 2 + a + a + a - --- - --- - -- - a z - a z - 3 z - ---- - ---- - ---- - 7 5 3 6 4 2 a a a a a a 3 3 3 3 4 4 4 2 2 7 z 12 z 5 z z 3 3 14 z 20 z 4 z > 2 a z + ---- + ----- + ---- - -- + a z + ----- + ----- + ---- + 7 5 3 a 6 4 2 a a a a a a 5 5 5 5 6 6 2 4 5 z 6 z 5 z 2 z 5 6 10 z 17 z > 2 a z - ---- - ---- - ---- - ---- + 2 a z + 2 z - ----- - ----- - 7 5 3 a 6 4 a a a a a 6 7 7 7 7 8 8 8 9 9 5 z z 2 z z 2 z 2 z 4 z 2 z z z > ---- + -- - ---- - -- + ---- + ---- + ---- + ---- + -- + -- 2 7 5 3 a 6 4 2 5 3 a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 34]], Vassiliev[3][Knot[10, 34]]} |
Out[19]= | {3, 3} |
In[20]:= | Kh[Knot[10, 34]][q, t] |
Out[20]= | 3 1 1 1 2 1 3 3 2 - + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 2 q t + 3 q t + q 7 3 5 2 3 2 3 q t q t q t q t q t 5 2 5 3 7 3 7 4 9 4 9 5 11 5 > 3 q t + 2 q t + 3 q t + 2 q t + 2 q t + q t + 2 q t + 11 6 13 6 15 7 > q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 34], 2][q] |
Out[21]= | -9 2 4 6 -4 7 10 4 2 3 4 8 + q - -- + -- - -- + q + -- - -- + - - 14 q + 8 q + 9 q - 18 q + 8 6 5 3 2 q q q q q q 5 6 7 8 9 10 11 12 13 > 8 q + 13 q - 20 q + 5 q + 15 q - 18 q + q + 15 q - 13 q - 14 15 16 17 18 19 20 21 > 3 q + 12 q - 6 q - 4 q + 6 q - q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1034 |
|