n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 |
q-17 - q-16 - q-15 + 2q-14 - q-13 - 2q-12 + 3q-11 - q-10 - 3q-9 + 4q-8 - q-7 - 2q-6 + 3q-5 - q-3 + q-2 |
3 |
- q-33 + q-32 + q-31 - 2q-29 + 2q-27 + q-26 - 3q-25 - q-24 + 3q-23 + 2q-22 - 3q-21 - 3q-20 + 4q-19 + 2q-18 - 4q-17 - 4q-16 + 5q-15 + 2q-14 - 3q-13 - 3q-12 + 4q-11 + 2q-10 - 2q-9 - 2q-8 + 2q-7 + q-6 - q-4 + q-3 |
4 |
q-54 - q-53 - q-52 + 3q-49 - q-48 - q-47 - q-46 - 2q-45 + 5q-44 - q-42 - 2q-41 - 4q-40 + 6q-39 + q-38 + q-37 - 3q-36 - 6q-35 + 7q-34 + 2q-33 + 2q-32 - 4q-31 - 8q-30 + 8q-29 + 2q-28 + 2q-27 - 5q-26 - 9q-25 + 9q-24 + 2q-23 + 2q-22 - 4q-21 - 8q-20 + 7q-19 + 2q-18 + 2q-17 - 3q-16 - 6q-15 + 5q-14 + q-13 + 2q-12 - q-11 - 3q-10 + 2q-9 + q-7 - q-5 + q-4 |
5 |
- q-80 + q-79 + q-78 - q-75 - 2q-74 + 2q-72 + q-71 + q-70 - 3q-68 - 2q-67 + q-66 + 2q-65 + 3q-64 + q-63 - 3q-62 - 4q-61 - q-60 + q-59 + 5q-58 + 3q-57 - 2q-56 - 5q-55 - 4q-54 + q-53 + 6q-52 + 5q-51 - 7q-49 - 6q-48 + q-47 + 7q-46 + 6q-45 + q-44 - 8q-43 - 8q-42 + 2q-41 + 8q-40 + 6q-39 + q-38 - 9q-37 - 9q-36 + 3q-35 + 7q-34 + 6q-33 + q-32 - 8q-31 - 9q-30 + 2q-29 + 6q-28 + 6q-27 + q-26 - 6q-25 - 7q-24 + q-23 + 4q-22 + 5q-21 + q-20 - 3q-19 - 5q-18 + q-17 + q-16 + 2q-15 + 2q-14 - q-13 - 2q-12 + q-11 + q-8 - q-6 + q-5 |
6 |
q-111 - q-110 - q-109 + q-106 + 3q-104 - q-103 - 2q-102 - q-101 - q-100 - q-98 + 6q-97 - q-95 - q-94 - 2q-93 - 2q-92 - 4q-91 + 8q-90 + 2q-89 + q-88 - q-86 - 5q-85 - 8q-84 + 8q-83 + 2q-82 + 4q-81 + 2q-80 + q-79 - 7q-78 - 12q-77 + 7q-76 + q-75 + 7q-74 + 5q-73 + 3q-72 - 9q-71 - 15q-70 + 6q-69 + 9q-67 + 7q-66 + 5q-65 - 11q-64 - 18q-63 + 6q-62 + 11q-60 + 8q-59 + 6q-58 - 12q-57 - 20q-56 + 8q-55 + 12q-53 + 8q-52 + 6q-51 - 13q-50 - 21q-49 + 8q-48 + 11q-46 + 8q-45 + 6q-44 - 12q-43 - 20q-42 + 6q-41 + 10q-39 + 8q-38 + 6q-37 - 10q-36 - 17q-35 + 4q-34 - q-33 + 8q-32 + 6q-31 + 6q-30 - 7q-29 - 12q-28 + 3q-27 - 2q-26 + 4q-25 + 4q-24 + 5q-23 - 3q-22 - 6q-21 + 2q-20 - 2q-19 + q-18 + q-17 + 3q-16 - q-15 - 2q-14 + 2q-13 - q-12 + q-9 - q-7 + q-6 |
7 |
- q-147 + q-146 + q-145 - q-142 - q-140 - 2q-139 + q-138 + 2q-137 + q-136 + 2q-135 - q-134 - 5q-131 - q-130 + q-129 + q-128 + 4q-127 + 2q-125 + 2q-124 - 6q-123 - 3q-122 - 2q-121 - 2q-120 + 5q-119 + q-118 + 5q-117 + 6q-116 - 5q-115 - 3q-114 - 5q-113 - 6q-112 + 2q-111 + q-110 + 7q-109 + 10q-108 - 2q-107 - q-106 - 6q-105 - 12q-104 - q-103 - q-102 + 8q-101 + 14q-100 + 2q-99 + 2q-98 - 7q-97 - 16q-96 - 4q-95 - 3q-94 + 7q-93 + 18q-92 + 6q-91 + 4q-90 - 8q-89 - 20q-88 - 6q-87 - 5q-86 + 7q-85 + 21q-84 + 8q-83 + 6q-82 - 10q-81 - 23q-80 - 7q-79 - 4q-78 + 7q-77 + 23q-76 + 9q-75 + 7q-74 - 11q-73 - 25q-72 - 6q-71 - 3q-70 + 7q-69 + 24q-68 + 9q-67 + 7q-66 - 12q-65 - 26q-64 - 5q-63 - 4q-62 + 7q-61 + 23q-60 + 10q-59 + 7q-58 - 11q-57 - 25q-56 - 6q-55 - 5q-54 + 7q-53 + 21q-52 + 10q-51 + 7q-50 - 9q-49 - 22q-48 - 7q-47 - 6q-46 + 5q-45 + 18q-44 + 9q-43 + 6q-42 - 5q-41 - 17q-40 - 5q-39 - 6q-38 + 2q-37 + 12q-36 + 6q-35 + 6q-34 - 2q-33 - 10q-32 - 2q-31 - 4q-30 - 2q-29 + 5q-28 + 4q-27 + 4q-26 - 5q-24 + 2q-23 - 2q-22 - 2q-21 + q-20 + q-19 + 2q-18 - 2q-16 + 2q-15 - q-13 + q-10 - q-8 + q-7 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | PD[Knot[5, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[5, 2]] |
Out[3]= | GaussCode[-1, 5, -2, 1, -3, 4, -5, 2, -4, 3] |
In[4]:= | DTCode[Knot[5, 2]] |
Out[4]= | DTCode[4, 8, 10, 2, 6] |
In[5]:= | br = BR[Knot[5, 2]] |
Out[5]= | BR[3, {-1, -1, -1, -2, 1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 6} |
In[7]:= | BraidIndex[Knot[5, 2]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[5, 2]]] |
|  |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[5, 2]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[5, 2]][t] |
Out[10]= | 2
-3 + - + 2 t
t |
In[11]:= | Conway[Knot[5, 2]][z] |
Out[11]= | 2
1 + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[5, 2]} |
In[13]:= | {KnotDet[Knot[5, 2]], KnotSignature[Knot[5, 2]]} |
Out[13]= | {7, -2} |
In[14]:= | Jones[Knot[5, 2]][q] |
Out[14]= | -6 -5 -4 2 -2 1
-q + q - q + -- - q + -
3 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[5, 2], Knot[11, NonAlternating, 57]} |
In[16]:= | A2Invariant[Knot[5, 2]][q] |
Out[16]= | -20 -18 -12 -10 -8 -6 -2
-q - q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[5, 2]][a, z] |
Out[17]= | 2 4 6 2 2 4 2
a + a - a + a z + a z |
In[18]:= | Kauffman[Knot[5, 2]][a, z] |
Out[18]= | 2 4 6 5 7 2 2 4 2 6 2 3 3 5 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + 2 a z +
7 3 4 4 6 4
> a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[5, 2]], Vassiliev[3][Knot[5, 2]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[5, 2]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 1
q + - + ------ + ----- + ----- + ----- + ----- + ----
q 13 5 9 4 9 3 7 2 5 2 3
q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[5, 2], 2][q] |
Out[21]= | -17 -16 -15 2 -13 2 3 -10 3 4 -7 2 3
q - q - q + --- - q - --- + --- - q - -- + -- - q - -- + -- -
14 12 11 9 8 6 5
q q q q q q q
-3 -2
> q + q |