© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10138Visit 10138's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10138's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X7,15,8,14 X15,7,16,6 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss Code: | {1, -4, 3, -1, 2, 7, -6, -3, 4, -2, 5, -10, 9, 6, -7, -5, 8, -9, 10, -8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 -14 2 16 18 -6 20 12 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 5t-2 + 8t-1 - 7 + 8t - 5t2 + t3 |
Conway Polynomial: | 1 - 3z2 + z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {35, 2} |
Jones Polynomial: | q-3 - 2q-2 + 4q-1 - 5 + 6q - 6q2 + 5q3 - 4q4 + 2q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n117, ...} |
A2 (sl(3)) Invariant: | q-10 + q-8 + q-4 - q-2 - q4 + 2q6 - q8 + q10 - q12 - q14 + q16 + q20 |
HOMFLY-PT Polynomial: | a-6 - 2a-4 - 3a-4z2 - a-4z4 + 3a-2 + 5a-2z2 + 4a-2z4 + a-2z6 - 3 - 6z2 - 2z4 + 2a2 + a2z2 |
Kauffman Polynomial: | - a-6 + 3a-6z2 - 2a-5z + 3a-5z3 + a-5z5 - 2a-4 + 6a-4z2 - 5a-4z4 + 3a-4z6 - 2a-3z + 5a-3z3 - 6a-3z5 + 3a-3z7 - 3a-2 + 10a-2z2 - 13a-2z4 + 3a-2z6 + a-2z8 - a-1z + 8a-1z3 - 14a-1z5 + 5a-1z7 - 3 + 12z2 - 12z4 + z6 + z8 - az + 6az3 - 7az5 + 2az7 - 2a2 + 5a2z2 - 4a2z4 + a2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10138. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-10 - 2q-9 - q-8 + 7q-7 - 5q-6 - 8q-5 + 17q-4 - 4q-3 - 20q-2 + 23q-1 + 4 - 30q + 22q2 + 13q3 - 34q4 + 16q5 + 19q6 - 29q7 + 8q8 + 16q9 - 17q10 + 2q11 + 7q12 - 5q13 + q15 |
3 | q-21 - 2q-20 - q-19 + 2q-18 + 6q-17 - 4q-16 - 11q-15 + q-14 + 20q-13 + 4q-12 - 25q-11 - 18q-10 + 31q-9 + 29q-8 - 23q-7 - 47q-6 + 15q-5 + 56q-4 + 4q-3 - 65q-2 - 22q-1 + 64 + 45q - 63q2 - 61q3 + 54q4 + 81q5 - 46q6 - 95q7 + 36q8 + 104q9 - 23q10 - 110q11 + 11q12 + 105q13 + 4q14 - 96q15 - 12q16 + 76q17 + 19q18 - 55q19 - 19q20 + 34q21 + 16q22 - 17q23 - 12q24 + 10q25 + 2q26 - 4q28 + 2q29 |
4 | q-36 - 2q-35 - q-34 + 2q-33 + q-32 + 7q-31 - 8q-30 - 9q-29 + 2q-27 + 32q-26 - 6q-25 - 23q-24 - 22q-23 - 21q-22 + 68q-21 + 26q-20 - 3q-19 - 46q-18 - 96q-17 + 59q-16 + 56q-15 + 78q-14 - 170q-12 - 25q-11 + 2q-10 + 159q-9 + 136q-8 - 156q-7 - 117q-6 - 145q-5 + 153q-4 + 285q-3 - 40q-2 - 140q-1 - 315 + 57q + 378q2 + 114q3 - 96q4 - 448q5 - 72q6 + 413q7 + 257q8 - 31q9 - 538q10 - 193q11 + 414q12 + 376q13 + 38q14 - 582q15 - 302q16 + 371q17 + 456q18 + 120q19 - 547q20 - 376q21 + 259q22 + 440q23 + 200q24 - 400q25 - 367q26 + 107q27 + 311q28 + 215q29 - 201q30 - 253q31 + 4q32 + 140q33 + 145q34 - 58q35 - 113q36 - 17q37 + 34q38 + 56q39 - 7q40 - 29q41 - 6q42 + 3q43 + 11q44 - 5q46 + q48 |
5 | q-55 - 2q-54 - q-53 + 2q-52 + q-51 + 2q-50 + 3q-49 - 6q-48 - 11q-47 + 6q-45 + 13q-44 + 19q-43 - 2q-42 - 30q-41 - 33q-40 - 11q-39 + 22q-38 + 60q-37 + 51q-36 - 9q-35 - 71q-34 - 93q-33 - 49q-32 + 53q-31 + 133q-30 + 123q-29 + 23q-28 - 127q-27 - 213q-26 - 133q-25 + 48q-24 + 237q-23 + 295q-22 + 113q-21 - 207q-20 - 402q-19 - 328q-18 + 29q-17 + 458q-16 + 569q-15 + 209q-14 - 375q-13 - 745q-12 - 542q-11 + 180q-10 + 845q-9 + 853q-8 + 128q-7 - 811q-6 - 1144q-5 - 484q-4 + 675q-3 + 1334q-2 + 865q-1 - 441 - 1465q - 1204q2 + 173q3 + 1487q4 + 1520q5 + 117q6 - 1486q7 - 1769q8 - 384q9 + 1437q10 + 1983q11 + 639q12 - 1398q13 - 2166q14 - 856q15 + 1350q16 + 2326q17 + 1064q18 - 1292q19 - 2476q20 - 1262q21 + 1219q22 + 2577q23 + 1461q24 - 1082q25 - 2628q26 - 1660q27 + 893q28 + 2580q29 + 1817q30 - 619q31 - 2422q32 - 1915q33 + 318q34 + 2127q35 + 1904q36 - q37 - 1743q38 - 1769q39 - 244q40 + 1294q41 + 1507q42 + 414q43 - 861q44 - 1189q45 - 451q46 + 502q47 + 833q48 + 404q49 - 235q50 - 530q51 - 316q52 + 100q53 + 299q54 + 187q55 - 16q56 - 140q57 - 123q58 + 6q59 + 73q60 + 38q61 + 8q62 - 20q63 - 28q64 + 2q65 + 12q66 + 2q67 - 4q70 + 2q71 |
6 | q-78 - 2q-77 - q-76 + 2q-75 + q-74 + 2q-73 - 2q-72 + 5q-71 - 8q-70 - 11q-69 + 3q-68 + 5q-67 + 14q-66 + 3q-65 + 24q-64 - 16q-63 - 39q-62 - 24q-61 - 13q-60 + 24q-59 + 21q-58 + 102q-57 + 26q-56 - 40q-55 - 77q-54 - 105q-53 - 62q-52 - 49q-51 + 188q-50 + 168q-49 + 135q-48 + 25q-47 - 127q-46 - 249q-45 - 382q-44 - 21q-43 + 118q-42 + 379q-41 + 442q-40 + 337q-39 - 45q-38 - 665q-37 - 600q-36 - 604q-35 - 26q-34 + 582q-33 + 1156q-32 + 1024q-31 + 27q-30 - 641q-29 - 1556q-28 - 1432q-27 - 601q-26 + 1081q-25 + 2148q-24 + 1813q-23 + 916q-22 - 1220q-21 - 2648q-20 - 2896q-19 - 857q-18 + 1655q-17 + 3167q-16 + 3515q-15 + 1169q-14 - 1980q-13 - 4539q-12 - 3787q-11 - 950q-10 + 2493q-9 + 5297q-8 + 4481q-7 + 780q-6 - 4121q-5 - 5880q-4 - 4390q-3 - 154q-2 + 5123q-1 + 7006 + 4286q - 1911q2 - 6256q3 - 7140q4 - 3442q5 + 3427q6 + 8087q7 + 7204q8 + 830q9 - 5424q10 - 8719q11 - 6217q12 + 1363q13 + 8220q14 + 9158q15 + 3130q16 - 4371q17 - 9566q18 - 8186q19 - 286q20 + 8180q21 + 10513q22 + 4811q23 - 3638q24 - 10261q25 - 9694q26 - 1516q27 + 8245q28 + 11702q29 + 6298q30 - 2970q31 - 10849q32 - 11135q33 - 2919q34 + 7896q35 + 12603q36 + 8003q37 - 1587q38 - 10591q39 - 12255q40 - 4911q41 + 6222q42 + 12299q43 + 9496q44 + 850q45 - 8532q46 - 11955q47 - 6812q48 + 3090q49 + 9864q50 + 9467q51 + 3324q52 - 4840q53 - 9375q54 - 7123q55 - 106q56 + 5816q57 + 7192q58 + 4189q59 - 1267q60 - 5388q61 - 5303q62 - 1635q63 + 2149q64 + 3836q65 + 3106q66 + 516q67 - 2062q68 - 2689q69 - 1360q70 + 304q71 + 1313q72 + 1434q73 + 628q74 - 468q75 - 895q76 - 560q77 - 79q78 + 252q79 + 407q80 + 257q81 - 62q82 - 195q83 - 122q84 - 31q85 + 20q86 + 67q87 + 59q88 - 10q89 - 33q90 - 10q91 - q92 + 4q94 + 7q95 - 5q97 + q99 |
7 | q-105 - 2q-104 - q-103 + 2q-102 + q-101 + 2q-100 - 2q-99 + 3q-97 - 8q-96 - 8q-95 + 2q-94 + 5q-93 + 16q-92 + 5q-91 + q-90 + 13q-89 - 22q-88 - 34q-87 - 27q-86 - 15q-85 + 37q-84 + 40q-83 + 40q-82 + 73q-81 + 6q-80 - 53q-79 - 99q-78 - 149q-77 - 48q-76 + 9q-75 + 72q-74 + 222q-73 + 203q-72 + 146q-71 + 2q-70 - 270q-69 - 312q-68 - 339q-67 - 282q-66 + 83q-65 + 327q-64 + 603q-63 + 691q-62 + 299q-61 - 48q-60 - 580q-59 - 1080q-58 - 979q-57 - 678q-56 + 141q-55 + 1179q-54 + 1595q-53 + 1729q-52 + 966q-51 - 543q-50 - 1757q-49 - 2798q-48 - 2621q-47 - 1012q-46 + 957q-45 + 3255q-44 + 4322q-43 + 3337q-42 + 1154q-41 - 2389q-40 - 5309q-39 - 5942q-38 - 4413q-37 - 93q-36 + 4766q-35 + 7715q-34 + 8104q-33 + 4272q-32 - 2056q-31 - 7856q-30 - 11298q-29 - 9241q-28 - 2628q-27 + 5489q-26 + 12633q-25 + 14043q-24 + 8867q-23 - 640q-22 - 11524q-21 - 17356q-20 - 15283q-19 - 6217q-18 + 7466q-17 + 18220q-16 + 20880q-15 + 14079q-14 - 1023q-13 - 16263q-12 - 24446q-11 - 21699q-10 - 7124q-9 + 11601q-8 + 25535q-7 + 28117q-6 + 15793q-5 - 4890q-4 - 24040q-3 - 32665q-2 - 24086q-1 - 2969 + 20477q + 35068q2 + 31224q3 + 11148q4 - 15403q5 - 35645q6 - 36959q7 - 18807q8 + 9706q9 + 34720q10 + 41104q11 + 25631q12 - 3902q13 - 32974q14 - 44046q15 - 31309q16 - 1327q17 + 30851q18 + 45981q19 + 35879q20 + 5877q21 - 28846q22 - 47428q23 - 39537q24 - 9483q25 + 27295q26 + 48603q27 + 42479q28 + 12340q29 - 26220q30 - 49896q31 - 45126q32 - 14603q33 + 25669q34 + 51393q35 + 47676q36 + 16697q37 - 25281q38 - 53065q39 - 50470q40 - 19075q41 + 24672q42 + 54696q43 + 53549q44 + 22058q45 - 23237q46 - 55711q47 - 56715q48 - 25991q49 + 20410q50 + 55554q51 + 59505q52 + 30643q53 - 15874q54 - 53422q55 - 61109q56 - 35597q57 + 9628q58 + 48891q59 + 60703q60 + 39922q61 - 2210q62 - 41859q63 - 57642q64 - 42614q65 - 5362q66 + 32875q67 + 51651q68 + 42776q69 + 11993q70 - 22929q71 - 43282q72 - 40128q73 - 16471q74 + 13450q75 + 33434q76 + 34791q77 + 18330q78 - 5459q79 - 23558q80 - 27866q81 - 17596q82 + 11q83 + 14871q84 + 20312q85 + 14879q86 + 3039q87 - 8126q88 - 13524q89 - 11278q90 - 3940q91 + 3737q92 + 8110q93 + 7564q94 + 3502q95 - 1200q96 - 4296q97 - 4616q98 - 2584q99 + 138q100 + 2111q101 + 2463q102 + 1498q103 + 220q104 - 828q105 - 1194q106 - 861q107 - 196q108 + 367q109 + 519q110 + 332q111 + 110q112 - 82q113 - 201q114 - 161q115 - 55q116 + 53q117 + 78q118 + 34q119 + 12q120 - 4q121 - 22q122 - 16q123 - 4q124 + 4q125 + 10q126 - 4q130 + 2q131 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 138]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[16, 12, 17, 11], X[7, 15, 8, 14], X[15, 7, 16, 6], X[20, 18, 1, 17], > X[18, 13, 19, 14], X[12, 19, 13, 20]] |
In[3]:= | GaussCode[Knot[10, 138]] |
Out[3]= | GaussCode[1, -4, 3, -1, 2, 7, -6, -3, 4, -2, 5, -10, 9, 6, -7, -5, 8, -9, 10, > -8] |
In[4]:= | DTCode[Knot[10, 138]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, 16, 18, -6, 20, 12] |
In[5]:= | br = BR[Knot[10, 138]] |
Out[5]= | BR[5, {-1, 2, -1, 2, 3, 2, 2, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 138]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 138]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 138]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 138]][t] |
Out[10]= | -3 5 8 2 3 -7 + t - -- + - + 8 t - 5 t + t 2 t t |
In[11]:= | Conway[Knot[10, 138]][z] |
Out[11]= | 2 4 6 1 - 3 z + z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 138]} |
In[13]:= | {KnotDet[Knot[10, 138]], KnotSignature[Knot[10, 138]]} |
Out[13]= | {35, 2} |
In[14]:= | Jones[Knot[10, 138]][q] |
Out[14]= | -3 2 4 2 3 4 5 -5 + q - -- + - + 6 q - 6 q + 5 q - 4 q + 2 q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 138], Knot[11, NonAlternating, 117]} |
In[16]:= | A2Invariant[Knot[10, 138]][q] |
Out[16]= | -10 -8 -4 -2 4 6 8 10 12 14 16 20 q + q + q - q - q + 2 q - q + q - q - q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 138]][a, z] |
Out[17]= | 2 2 4 4 6 -6 2 3 2 2 3 z 5 z 2 2 4 z 4 z z -3 + a - -- + -- + 2 a - 6 z - ---- + ---- + a z - 2 z - -- + ---- + -- 4 2 4 2 4 2 2 a a a a a a a |
In[18]:= | Kauffman[Knot[10, 138]][a, z] |
Out[18]= | 2 2 2 -6 2 3 2 2 z 2 z z 2 3 z 6 z 10 z -3 - a - -- - -- - 2 a - --- - --- - - - a z + 12 z + ---- + ---- + ----- + 4 2 5 3 a 6 4 2 a a a a a a a 3 3 3 4 4 2 2 3 z 5 z 8 z 3 4 5 z 13 z 2 4 > 5 a z + ---- + ---- + ---- + 6 a z - 12 z - ---- - ----- - 4 a z + 5 3 a 4 2 a a a a 5 5 5 6 6 7 7 z 6 z 14 z 5 6 3 z 3 z 2 6 3 z 5 z > -- - ---- - ----- - 7 a z + z + ---- + ---- + a z + ---- + ---- + 5 3 a 4 2 3 a a a a a a 8 7 8 z > 2 a z + z + -- 2 a |
In[19]:= | {Vassiliev[2][Knot[10, 138]], Vassiliev[3][Knot[10, 138]]} |
Out[19]= | {-3, -2} |
In[20]:= | Kh[Knot[10, 138]][q, t] |
Out[20]= | 3 1 1 1 3 1 2 3 q 3 4 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + 3 q t + 7 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t 5 5 2 7 2 7 3 9 3 11 4 > 3 q t + 2 q t + 3 q t + 2 q t + 2 q t + 2 q t |
In[21]:= | ColouredJones[Knot[10, 138], 2][q] |
Out[21]= | -10 2 -8 7 5 8 17 4 20 23 2 3 4 + q - -- - q + -- - -- - -- + -- - -- - -- + -- - 30 q + 22 q + 13 q - 9 7 6 5 4 3 2 q q q q q q q q 4 5 6 7 8 9 10 11 12 > 34 q + 16 q + 19 q - 29 q + 8 q + 16 q - 17 q + 2 q + 7 q - 13 15 > 5 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10138 |
|