© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 99Visit 99's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
Gauss Code: | {-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4} |
DT (Dowker-Thistlethwaite) Code: | 6 12 14 16 18 2 4 10 8 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 4t-2 + 6t-1 - 7 + 6t - 4t2 + 2t3 |
Conway Polynomial: | 1 + 8z2 + 8z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {31, -6} |
Jones Polynomial: | - q-12 + 2q-11 - 4q-10 + 5q-9 - 5q-8 + 5q-7 - 4q-6 + 3q-5 - q-4 + q-3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-36 - q-32 - q-30 - q-26 + 2q-24 + q-20 + q-18 + 2q-14 + q-10 |
HOMFLY-PT Polynomial: | 2a6 + 7a6z2 + 5a6z4 + a6z6 + a8 + 4a8z2 + 4a8z4 + a8z6 - 2a10 - 3a10z2 - a10z4 |
Kauffman Polynomial: | - 2a6 + 7a6z2 - 5a6z4 + a6z6 + a7z + a7z3 - 3a7z5 + a7z7 + a8 - 3a8z2 + 3a8z4 - 3a8z6 + a8z8 - 2a9z + 5a9z3 - 8a9z5 + 3a9z7 + 2a10 - 6a10z2 + 2a10z4 - a10z6 + a10z8 - 2a11z5 + 2a11z7 + 3a12z2 - 4a12z4 + 3a12z6 + 2a13z - 3a13z3 + 3a13z5 - a14z2 + 2a14z4 - a15z + a15z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {8, -22} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 99. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-33 - 2q-32 + q-31 + 4q-30 - 8q-29 + 3q-28 + 10q-27 - 18q-26 + 6q-25 + 17q-24 - 25q-23 + 6q-22 + 20q-21 - 25q-20 + 2q-19 + 21q-18 - 19q-17 - 2q-16 + 17q-15 - 11q-14 - 4q-13 + 10q-12 - 4q-11 - 3q-10 + 4q-9 - q-7 + q-6 |
3 | - q-63 + 2q-62 - q-61 - q-60 - q-59 + 5q-58 - q-57 - 6q-56 + q-55 + 11q-54 - 6q-53 - 13q-52 + 7q-51 + 23q-50 - 15q-49 - 28q-48 + 18q-47 + 37q-46 - 21q-45 - 44q-44 + 22q-43 + 48q-42 - 18q-41 - 53q-40 + 15q-39 + 51q-38 - 7q-37 - 51q-36 + q-35 + 46q-34 + 8q-33 - 45q-32 - 11q-31 + 36q-30 + 19q-29 - 33q-28 - 19q-27 + 22q-26 + 24q-25 - 18q-24 - 18q-23 + 6q-22 + 20q-21 - 5q-20 - 11q-19 - 3q-18 + 10q-17 + q-16 - 3q-15 - 3q-14 + 3q-13 + q-12 - q-10 + q-9 |
4 | q-102 - 2q-101 + q-100 + q-99 - 2q-98 + 4q-97 - 7q-96 + 3q-95 + 4q-94 - 6q-93 + 11q-92 - 16q-91 + 8q-90 + 7q-89 - 19q-88 + 21q-87 - 20q-86 + 24q-85 + 6q-84 - 50q-83 + 27q-82 - 17q-81 + 60q-80 + 12q-79 - 100q-78 + 14q-77 - 14q-76 + 113q-75 + 33q-74 - 144q-73 - 12q-72 - 27q-71 + 152q-70 + 65q-69 - 157q-68 - 32q-67 - 54q-66 + 158q-65 + 87q-64 - 138q-63 - 30q-62 - 82q-61 + 137q-60 + 94q-59 - 104q-58 - 16q-57 - 103q-56 + 103q-55 + 91q-54 - 61q-53 - q-52 - 119q-51 + 63q-50 + 85q-49 - 17q-48 + 15q-47 - 121q-46 + 19q-45 + 65q-44 + 17q-43 + 38q-42 - 102q-41 - 17q-40 + 31q-39 + 28q-38 + 54q-37 - 61q-36 - 28q-35 - 3q-34 + 15q-33 + 51q-32 - 21q-31 - 16q-30 - 16q-29 - 3q-28 + 30q-27 - 2q-26 - q-25 - 10q-24 - 8q-23 + 11q-22 + 3q-20 - 2q-19 - 4q-18 + 3q-17 + q-15 - q-13 + q-12 |
5 | - q-150 + 2q-149 - q-148 - q-147 + 2q-146 - q-145 - 2q-144 + 5q-143 - q-142 - 5q-141 + 3q-140 - q-139 - 4q-138 + 10q-137 + q-136 - 5q-135 - 5q-133 - 9q-132 + 6q-131 + 13q-130 + 11q-129 + 8q-128 - 20q-127 - 40q-126 - 15q-125 + 29q-124 + 65q-123 + 53q-122 - 40q-121 - 118q-120 - 83q-119 + 37q-118 + 157q-117 + 160q-116 - 29q-115 - 221q-114 - 218q-113 - 3q-112 + 254q-111 + 305q-110 + 48q-109 - 288q-108 - 372q-107 - 98q-106 + 288q-105 + 424q-104 + 158q-103 - 275q-102 - 458q-101 - 200q-100 + 249q-99 + 458q-98 + 233q-97 - 207q-96 - 453q-95 - 248q-94 + 181q-93 + 416q-92 + 251q-91 - 139q-90 - 388q-89 - 246q-88 + 115q-87 + 340q-86 + 240q-85 - 74q-84 - 308q-83 - 231q-82 + 47q-81 + 253q-80 + 225q-79 + 3q-78 - 215q-77 - 218q-76 - 29q-75 + 146q-74 + 201q-73 + 87q-72 - 103q-71 - 178q-70 - 104q-69 + 26q-68 + 143q-67 + 139q-66 + 15q-65 - 95q-64 - 128q-63 - 80q-62 + 47q-61 + 126q-60 + 92q-59 + 10q-58 - 80q-57 - 125q-56 - 45q-55 + 56q-54 + 90q-53 + 77q-52 + 4q-51 - 89q-50 - 79q-49 - 17q-48 + 33q-47 + 70q-46 + 55q-45 - 22q-44 - 49q-43 - 40q-42 - 15q-41 + 25q-40 + 46q-39 + 12q-38 - 7q-37 - 20q-36 - 23q-35 - 4q-34 + 18q-33 + 8q-32 + 7q-31 - q-30 - 10q-29 - 7q-28 + 5q-27 + 3q-25 + 3q-24 - 2q-23 - 3q-22 + 2q-21 + q-18 - q-16 + q-15 |
6 | q-207 - 2q-206 + q-205 + q-204 - 2q-203 + q-202 - q-201 + 4q-200 - 7q-199 + 2q-198 + 8q-197 - 7q-196 + 2q-195 - 2q-194 + 7q-193 - 18q-192 + 2q-191 + 22q-190 - 12q-189 + 7q-188 + q-187 + 12q-186 - 46q-185 - 8q-184 + 38q-183 - 17q-182 + 33q-181 + 25q-180 + 25q-179 - 102q-178 - 58q-177 + 36q-176 - 18q-175 + 110q-174 + 113q-173 + 62q-172 - 207q-171 - 199q-170 - 37q-169 - 25q-168 + 280q-167 + 333q-166 + 181q-165 - 357q-164 - 483q-163 - 256q-162 - 103q-161 + 528q-160 + 722q-159 + 465q-158 - 451q-157 - 860q-156 - 653q-155 - 353q-154 + 713q-153 + 1189q-152 + 923q-151 - 358q-150 - 1139q-149 - 1099q-148 - 767q-147 + 681q-146 + 1506q-145 + 1395q-144 - 86q-143 - 1168q-142 - 1371q-141 - 1164q-140 + 467q-139 + 1543q-138 + 1662q-137 + 183q-136 - 1002q-135 - 1377q-134 - 1359q-133 + 244q-132 + 1385q-131 + 1676q-130 + 306q-129 - 800q-128 - 1223q-127 - 1348q-126 + 109q-125 + 1178q-124 + 1556q-123 + 315q-122 - 623q-121 - 1040q-120 - 1256q-119 + 11q-118 + 964q-117 + 1413q-116 + 327q-115 - 425q-114 - 853q-113 - 1175q-112 - 133q-111 + 707q-110 + 1255q-109 + 388q-108 - 162q-107 - 618q-106 - 1077q-105 - 325q-104 + 374q-103 + 1024q-102 + 440q-101 + 139q-100 - 304q-99 - 885q-98 - 478q-97 + 5q-96 + 683q-95 + 381q-94 + 373q-93 + 50q-92 - 558q-91 - 481q-90 - 282q-89 + 284q-88 + 167q-87 + 420q-86 + 313q-85 - 164q-84 - 291q-83 - 357q-82 - 26q-81 - 124q-80 + 253q-79 + 355q-78 + 126q-77 - 13q-76 - 206q-75 - 113q-74 - 308q-73 + 5q-72 + 185q-71 + 182q-70 + 156q-69 + 14q-68 - 5q-67 - 276q-66 - 129q-65 - 18q-64 + 64q-63 + 129q-62 + 113q-61 + 117q-60 - 120q-59 - 93q-58 - 89q-57 - 43q-56 + 16q-55 + 70q-54 + 124q-53 - 9q-52 - 7q-51 - 45q-50 - 48q-49 - 42q-48 + 4q-47 + 61q-46 + 8q-45 + 24q-44 - 11q-42 - 31q-41 - 15q-40 + 18q-39 - 4q-38 + 12q-37 + 7q-36 + 5q-35 - 10q-34 - 8q-33 + 6q-32 - 5q-31 + 2q-30 + 2q-29 + 4q-28 - 2q-27 - 3q-26 + 3q-25 - q-24 + q-21 - q-19 + q-18 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 9]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1], > X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3], > X[13, 4, 14, 5]] |
In[3]:= | GaussCode[Knot[9, 9]] |
Out[3]= | GaussCode[-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4] |
In[4]:= | DTCode[Knot[9, 9]] |
Out[4]= | DTCode[6, 12, 14, 16, 18, 2, 4, 10, 8] |
In[5]:= | br = BR[Knot[9, 9]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -2, 1, -2, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[9, 9]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[9, 9]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 9]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 9]][t] |
Out[10]= | 2 4 6 2 3 -7 + -- - -- + - + 6 t - 4 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[9, 9]][z] |
Out[11]= | 2 4 6 1 + 8 z + 8 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 9]} |
In[13]:= | {KnotDet[Knot[9, 9]], KnotSignature[Knot[9, 9]]} |
Out[13]= | {31, -6} |
In[14]:= | Jones[Knot[9, 9]][q] |
Out[14]= | -12 2 4 5 5 5 4 3 -4 -3 -q + --- - --- + -- - -- + -- - -- + -- - q + q 11 10 9 8 7 6 5 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 9]} |
In[16]:= | A2Invariant[Knot[9, 9]][q] |
Out[16]= | -36 -32 -30 -26 2 -20 -18 2 -10 -q - q - q - q + --- + q + q + --- + q 24 14 q q |
In[17]:= | HOMFLYPT[Knot[9, 9]][a, z] |
Out[17]= | 6 8 10 6 2 8 2 10 2 6 4 8 4 10 4 2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z - a z + 6 6 8 6 > a z + a z |
In[18]:= | Kauffman[Knot[9, 9]][a, z] |
Out[18]= | 6 8 10 7 9 13 15 6 2 8 2 -2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z - 3 a z - 10 2 12 2 14 2 7 3 9 3 13 3 15 3 > 6 a z + 3 a z - a z + a z + 5 a z - 3 a z + a z - 6 4 8 4 10 4 12 4 14 4 7 5 9 5 > 5 a z + 3 a z + 2 a z - 4 a z + 2 a z - 3 a z - 8 a z - 11 5 13 5 6 6 8 6 10 6 12 6 7 7 > 2 a z + 3 a z + a z - 3 a z - a z + 3 a z + a z + 9 7 11 7 8 8 10 8 > 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 9]], Vassiliev[3][Knot[9, 9]]} |
Out[19]= | {8, -22} |
In[20]:= | Kh[Knot[9, 9]][q, t] |
Out[20]= | -7 -5 1 1 1 3 1 2 3 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 25 9 23 8 21 8 21 7 19 7 19 6 17 6 q t q t q t q t q t q t q t 3 2 2 3 2 2 1 2 1 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ---- 17 5 15 5 15 4 13 4 13 3 11 3 11 2 9 2 7 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 9], 2][q] |
Out[21]= | -33 2 -31 4 8 3 10 18 6 17 25 6 20 q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 32 30 29 28 27 26 25 24 23 22 21 q q q q q q q q q q q 25 2 21 19 2 17 11 4 10 4 3 4 > --- + --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + -- - 20 19 18 17 16 15 14 13 12 11 10 9 q q q q q q q q q q q q -7 -6 > q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 99 |
|