© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 98Visit 98's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X9,1,10,18 X11,17,12,16 X15,13,16,12 X17,11,18,10 X13,6,14,7 X7283 |
Gauss Code: | {-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 18 16 6 12 10 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 8t-1 - 11 + 8t - 2t2 |
Conway Polynomial: | 1 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {814, 10131, ...} |
Determinant and Signature: | {31, -2} |
Jones Polynomial: | - q-6 + 2q-5 - 3q-4 + 5q-3 - 5q-2 + 5q-1 - 4 + 3q - 2q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n60, ...} |
A2 (sl(3)) Invariant: | - q-20 - q-18 + q-16 + q-12 + 2q-10 + q-6 - q-4 - q2 + q4 + q10 |
HOMFLY-PT Polynomial: | a-2 + a-2z2 - 1 - 2z2 - z4 - a2z2 - a2z4 + 2a4 + 2a4z2 - a6 |
Kauffman Polynomial: | - a-2 + 4a-2z2 - 4a-2z4 + a-2z6 - 2a-1z + 8a-1z3 - 8a-1z5 + 2a-1z7 - 1 + 7z2 - 6z4 - z6 + z8 - 3az + 11az3 - 13az5 + 4az7 + 2a2z2 - 4a2z4 + a2z8 - a3z + 2a3z3 - 3a3z5 + 2a3z7 + 2a4 - 3a4z2 + 2a4z6 - a5z + 2a5z5 + a6 - 2a6z2 + 2a6z4 - a7z + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 98. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 2q-16 + 4q-14 - 6q-13 + 2q-12 + 7q-11 - 13q-10 + 6q-9 + 11q-8 - 20q-7 + 8q-6 + 15q-5 - 22q-4 + 5q-3 + 17q-2 - 19q-1 + 1 + 16q - 13q2 - 3q3 + 12q4 - 6q5 - 4q6 + 6q7 - q8 - 2q9 + q10 |
3 | - q-33 + 2q-32 - q-30 - 3q-29 + 4q-28 + 2q-27 - 3q-26 - 3q-25 + 3q-24 + 2q-23 - 3q-22 + 2q-21 + q-20 - 6q-19 - 2q-18 + 15q-17 - q-16 - 17q-15 - 7q-14 + 27q-13 + 6q-12 - 24q-11 - 14q-10 + 26q-9 + 15q-8 - 19q-7 - 21q-6 + 16q-5 + 22q-4 - 9q-3 - 25q-2 + 4q-1 + 26 + 3q - 26q2 - 8q3 + 24q4 + 13q5 - 20q6 - 17q7 + 14q8 + 19q9 - 9q10 - 16q11 + 2q12 + 14q13 + q14 - 9q15 - 3q16 + 5q17 + 2q18 - q19 - 2q20 + q21 |
4 | q-54 - 2q-53 + q-51 + 5q-49 - 8q-48 + q-46 + 16q-44 - 16q-43 - 2q-42 - 5q-41 - 2q-40 + 37q-39 - 18q-38 - 7q-37 - 24q-36 - 12q-35 + 70q-34 - 4q-33 - 9q-32 - 60q-31 - 41q-30 + 108q-29 + 31q-28 + 4q-27 - 102q-26 - 87q-25 + 129q-24 + 65q-23 + 35q-22 - 119q-21 - 130q-20 + 122q-19 + 75q-18 + 64q-17 - 107q-16 - 144q-15 + 106q-14 + 56q-13 + 75q-12 - 79q-11 - 133q-10 + 88q-9 + 28q-8 + 74q-7 - 48q-6 - 111q-5 + 66q-4 - 3q-3 + 69q-2 - 14q-1 - 82 + 42q - 34q2 + 55q3 + 15q4 - 44q5 + 29q6 - 60q7 + 28q8 + 27q9 - 7q10 + 34q11 - 64q12 - 3q13 + 14q14 + 12q15 + 46q16 - 43q17 - 18q18 - 7q19 + 6q20 + 43q21 - 13q22 - 11q23 - 15q24 - 6q25 + 24q26 + q27 - 7q29 - 7q30 + 6q31 + q32 + 2q33 - q34 - 2q35 + q36 |
5 | - q-80 + 2q-79 - q-77 - 2q-75 - q-74 + 6q-73 + 2q-72 - 4q-71 - q-70 - 8q-69 - 2q-68 + 14q-67 + 10q-66 - 3q-65 - 10q-64 - 20q-63 - 8q-62 + 25q-61 + 34q-60 + 7q-59 - 30q-58 - 52q-57 - 21q-56 + 44q-55 + 83q-54 + 38q-53 - 66q-52 - 122q-51 - 61q-50 + 83q-49 + 177q-48 + 102q-47 - 107q-46 - 245q-45 - 148q-44 + 114q-43 + 320q-42 + 222q-41 - 127q-40 - 382q-39 - 292q-38 + 96q-37 + 445q-36 + 379q-35 - 83q-34 - 472q-33 - 428q-32 + 17q-31 + 485q-30 + 493q-29 + 4q-28 - 471q-27 - 496q-26 - 60q-25 + 443q-24 + 517q-23 + 70q-22 - 413q-21 - 485q-20 - 101q-19 + 375q-18 + 475q-17 + 103q-16 - 338q-15 - 439q-14 - 123q-13 + 298q-12 + 417q-11 + 131q-10 - 253q-9 - 381q-8 - 152q-7 + 205q-6 + 350q-5 + 161q-4 - 149q-3 - 304q-2 - 176q-1 + 94 + 256q + 176q2 - 42q3 - 195q4 - 166q5 - 6q6 + 136q7 + 142q8 + 36q9 - 76q10 - 104q11 - 51q12 + 26q13 + 59q14 + 48q15 + 10q16 - 21q17 - 25q18 - 23q19 - 18q20 + 23q22 + 32q23 + 25q24 - q25 - 38q26 - 42q27 - 15q28 + 23q29 + 45q30 + 31q31 - 6q32 - 35q33 - 36q34 - 12q35 + 23q36 + 32q37 + 15q38 - 4q39 - 21q40 - 20q41 - 2q42 + 13q43 + 10q44 + 5q45 - 9q47 - 5q48 + 2q49 + 2q50 + q51 + 2q52 - q53 - 2q54 + q55 |
6 | q-111 - 2q-110 + q-108 + 2q-106 - 2q-105 + 3q-104 - 8q-103 + q-102 + 5q-101 - q-100 + 8q-99 - 4q-98 + 4q-97 - 24q-96 + 2q-95 + 13q-94 + 21q-92 - 2q-91 + 2q-90 - 55q-89 + q-88 + 23q-87 + 7q-86 + 46q-85 + 4q-84 - 9q-83 - 106q-82 - q-81 + 48q-80 + 31q-79 + 85q-78 - 2q-77 - 59q-76 - 190q-75 + 2q-74 + 125q-73 + 118q-72 + 151q-71 - 46q-70 - 207q-69 - 361q-68 + q-67 + 296q-66 + 343q-65 + 307q-64 - 119q-63 - 496q-62 - 695q-61 - 82q-60 + 526q-59 + 727q-58 + 635q-57 - 108q-56 - 847q-55 - 1185q-54 - 342q-53 + 653q-52 + 1136q-51 + 1105q-50 + 99q-49 - 1048q-48 - 1654q-47 - 737q-46 + 556q-45 + 1347q-44 + 1519q-43 + 428q-42 - 992q-41 - 1883q-40 - 1063q-39 + 325q-38 + 1297q-37 + 1690q-36 + 682q-35 - 792q-34 - 1854q-33 - 1179q-32 + 135q-31 + 1118q-30 + 1639q-29 + 772q-28 - 591q-27 - 1701q-26 - 1150q-25 + 22q-24 + 926q-23 + 1508q-22 + 789q-21 - 405q-20 - 1519q-19 - 1098q-18 - 101q-17 + 721q-16 + 1370q-15 + 830q-14 - 171q-13 - 1303q-12 - 1064q-11 - 285q-10 + 455q-9 + 1200q-8 + 895q-7 + 126q-6 - 1007q-5 - 993q-4 - 493q-3 + 123q-2 + 938q-1 + 904 + 431q - 624q2 - 805q3 - 622q4 - 215q5 + 569q6 + 765q7 + 629q8 - 223q9 - 483q10 - 571q11 - 432q12 + 170q13 + 465q14 + 614q15 + 55q16 - 121q17 - 337q18 - 423q19 - 99q20 + 125q21 + 401q22 + 102q23 + 105q24 - 62q25 - 225q26 - 138q27 - 69q28 + 156q29 - 21q30 + 108q31 + 66q32 - 23q33 - 29q34 - 56q35 + 53q36 - 125q37 + q38 + 23q39 + 31q40 + 44q41 + 28q42 + 82q43 - 98q44 - 48q45 - 46q46 - 15q47 + 13q48 + 44q49 + 102q50 - 20q51 - 12q52 - 43q53 - 35q54 - 31q55 + 4q56 + 63q57 + 9q58 + 17q59 - 7q60 - 13q61 - 27q62 - 14q63 + 18q64 + 2q65 + 11q66 + 4q67 + 3q68 - 9q69 - 7q70 + 4q71 - 2q72 + 2q73 + q74 + 2q75 - q76 - 2q77 + q78 |
7 | - q-147 + 2q-146 - q-144 - 2q-142 + 2q-141 - q-139 + 5q-138 - 2q-137 - 3q-136 + q-135 - 8q-134 + 4q-133 + 4q-132 + 2q-131 + 14q-130 - 9q-129 - 8q-128 - 20q-126 + 3q-125 + 10q-124 + 13q-123 + 34q-122 - 13q-121 - 19q-120 - 5q-119 - 42q-118 - q-117 + 12q-116 + 20q-115 + 65q-114 - 6q-113 - 22q-112 - 11q-111 - 59q-110 + 3q-109 + 6q-108 - 2q-107 + 62q-106 - 15q-105 - 14q-104 + 26q-103 - 12q-102 + 72q-101 + 13q-100 - 92q-99 - 78q-98 - 161q-97 - 44q-96 + 156q-95 + 242q-94 + 358q-93 + 136q-92 - 258q-91 - 498q-90 - 659q-89 - 303q-88 + 339q-87 + 816q-86 + 1104q-85 + 616q-84 - 357q-83 - 1208q-82 - 1693q-81 - 1070q-80 + 275q-79 + 1579q-78 + 2370q-77 + 1705q-76 - 39q-75 - 1872q-74 - 3070q-73 - 2460q-72 - 391q-71 + 2007q-70 + 3730q-69 + 3259q-68 + 945q-67 - 1941q-66 - 4185q-65 - 4014q-64 - 1637q-63 + 1682q-62 + 4470q-61 + 4638q-60 + 2267q-59 - 1295q-58 - 4488q-57 - 5022q-56 - 2844q-55 + 816q-54 + 4359q-53 + 5228q-52 + 3238q-51 - 422q-50 - 4102q-49 - 5191q-48 - 3449q-47 + 52q-46 + 3800q-45 + 5082q-44 + 3524q-43 + 154q-42 - 3538q-41 - 4848q-40 - 3462q-39 - 328q-38 + 3272q-37 + 4638q-36 + 3389q-35 + 419q-34 - 3058q-33 - 4403q-32 - 3284q-31 - 538q-30 + 2816q-29 + 4189q-28 + 3226q-27 + 684q-26 - 2553q-25 - 3968q-24 - 3187q-23 - 889q-22 + 2229q-21 + 3717q-20 + 3174q-19 + 1156q-18 - 1833q-17 - 3425q-16 - 3167q-15 - 1466q-14 + 1371q-13 + 3072q-12 + 3125q-11 + 1789q-10 - 832q-9 - 2635q-8 - 3031q-7 - 2121q-6 + 271q-5 + 2130q-4 + 2843q-3 + 2369q-2 + 315q-1 - 1529 - 2550q - 2540q2 - 861q3 + 897q4 + 2137q5 + 2554q6 + 1313q7 - 248q8 - 1596q9 - 2413q10 - 1635q11 - 356q12 + 1008q13 + 2101q14 + 1754q15 + 837q16 - 385q17 - 1640q18 - 1689q19 - 1154q20 - 168q21 + 1110q22 + 1432q23 + 1262q24 + 584q25 - 577q26 - 1039q27 - 1166q28 - 826q29 + 119q30 + 616q31 + 926q32 + 857q33 + 169q34 - 217q35 - 585q36 - 739q37 - 308q38 - 60q39 + 280q40 + 518q41 + 276q42 + 189q43 - 37q44 - 282q45 - 160q46 - 194q47 - 87q48 + 113q49 + 24q50 + 111q51 + 89q52 - 21q53 + 86q54 - 9q55 - 47q56 + 8q57 - 106q58 - 55q59 - 30q60 - 60q61 + 92q62 + 87q63 + 66q64 + 88q65 - 37q66 - 47q67 - 68q68 - 120q69 - 21q70 + 22q71 + 51q72 + 98q73 + 33q74 + 20q75 - 2q76 - 74q77 - 47q78 - 34q79 - 6q80 + 41q81 + 21q82 + 25q83 + 27q84 - 9q85 - 16q86 - 23q87 - 18q88 + 9q89 + 4q91 + 13q92 + 4q93 + 2q94 - 6q95 - 7q96 + 2q97 - 2q99 + 2q100 + q101 + 2q102 - q103 - 2q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 8]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 1, 10, 18], > X[11, 17, 12, 16], X[15, 13, 16, 12], X[17, 11, 18, 10], X[13, 6, 14, 7], > X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[9, 8]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4] |
In[4]:= | DTCode[Knot[9, 8]] |
Out[4]= | DTCode[4, 8, 14, 2, 18, 16, 6, 12, 10] |
In[5]:= | br = BR[Knot[9, 8]] |
Out[5]= | BR[5, {-1, -1, 2, -1, 2, 3, -2, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[9, 8]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 8]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 8]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 8]][t] |
Out[10]= | 2 8 2 -11 - -- + - + 8 t - 2 t 2 t t |
In[11]:= | Conway[Knot[9, 8]][z] |
Out[11]= | 4 1 - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 14], Knot[9, 8], Knot[10, 131]} |
In[13]:= | {KnotDet[Knot[9, 8]], KnotSignature[Knot[9, 8]]} |
Out[13]= | {31, -2} |
In[14]:= | Jones[Knot[9, 8]][q] |
Out[14]= | -6 2 3 5 5 5 2 3 -4 - q + -- - -- + -- - -- + - + 3 q - 2 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 8], Knot[11, NonAlternating, 60]} |
In[16]:= | A2Invariant[Knot[9, 8]][q] |
Out[16]= | -20 -18 -16 -12 2 -6 -4 2 4 10 -q - q + q + q + --- + q - q - q + q + q 10 q |
In[17]:= | HOMFLYPT[Knot[9, 8]][a, z] |
Out[17]= | 2 -2 4 6 2 z 2 2 4 2 4 2 4 -1 + a + 2 a - a - 2 z + -- - a z + 2 a z - z - a z 2 a |
In[18]:= | Kauffman[Knot[9, 8]][a, z] |
Out[18]= | 2 -2 4 6 2 z 3 5 7 2 4 z -1 - a + 2 a + a - --- - 3 a z - a z - a z - a z + 7 z + ---- + a 2 a 3 2 2 4 2 6 2 8 z 3 3 3 7 3 4 > 2 a z - 3 a z - 2 a z + ---- + 11 a z + 2 a z + a z - 6 z - a 4 5 6 4 z 2 4 6 4 8 z 5 3 5 5 5 6 z > ---- - 4 a z + 2 a z - ---- - 13 a z - 3 a z + 2 a z - z + -- + 2 a 2 a a 7 4 6 2 z 7 3 7 8 2 8 > 2 a z + ---- + 4 a z + 2 a z + z + a z a |
In[19]:= | {Vassiliev[2][Knot[9, 8]], Vassiliev[3][Knot[9, 8]]} |
Out[19]= | {0, -2} |
In[20]:= | Kh[Knot[9, 8]][q, t] |
Out[20]= | 3 3 1 1 1 2 1 3 2 2 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 3 2 t 2 3 2 3 3 5 3 7 4 > ---- + --- + 2 q t + q t + 2 q t + q t + q t + q t 3 q q t |
In[21]:= | ColouredJones[Knot[9, 8], 2][q] |
Out[21]= | -17 2 4 6 2 7 13 6 11 20 8 15 22 1 + q - --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - -- + 16 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q q 5 17 19 2 3 4 5 6 7 8 > -- + -- - -- + 16 q - 13 q - 3 q + 12 q - 6 q - 4 q + 6 q - q - 3 2 q q q 9 10 > 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 98 |
|