© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 97Visit 97's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X5,16,6,17 X7,18,8,1 X17,6,18,7 X9,14,10,15 X13,10,14,11 X15,8,16,9 X11,2,12,3 |
Gauss Code: | {-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 12 16 18 14 2 10 8 6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 7t-1 + 9 - 7t + 3t2 |
Conway Polynomial: | 1 + 5z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {29, -4} |
Jones Polynomial: | - q-11 + 2q-10 - 3q-9 + 4q-8 - 5q-7 + 5q-6 - 4q-5 + 3q-4 - q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-34 - q-28 + q-26 - q-18 + q-16 + q-12 + 2q-10 + q-6 |
HOMFLY-PT Polynomial: | 2a4 + 3a4z2 + a4z4 - a6 + a6z2 + a6z4 + a8 + 2a8z2 + a8z4 - a10 - a10z2 |
Kauffman Polynomial: | 2a4 - 3a4z2 + a4z4 - a5z - a5z3 + a5z5 + a6 - 2a6z2 + a6z6 - a7z + 2a7z3 - a7z5 + a7z7 + a8 - 4a8z2 + 7a8z4 - 3a8z6 + a8z8 - 3a9z + 11a9z3 - 9a9z5 + 3a9z7 + a10 - 2a10z2 + 2a10z4 - 2a10z6 + a10z8 - 2a11z + 5a11z3 - 6a11z5 + 2a11z7 + 3a12z2 - 6a12z4 + 2a12z6 + a13z - 3a13z3 + a13z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {5, -12} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 97. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-31 - 2q-30 + 5q-28 - 6q-27 - 3q-26 + 12q-25 - 7q-24 - 9q-23 + 18q-22 - 6q-21 - 16q-20 + 22q-19 - 4q-18 - 19q-17 + 21q-16 - 2q-15 - 16q-14 + 14q-13 - 9q-11 + 7q-10 - 3q-8 + 3q-7 - q-5 + q-4 |
3 | - q-60 + 2q-59 - 2q-57 - 2q-56 + 5q-55 + 4q-54 - 7q-53 - 9q-52 + 9q-51 + 13q-50 - 6q-49 - 20q-48 + 3q-47 + 24q-46 + 3q-45 - 26q-44 - 11q-43 + 27q-42 + 19q-41 - 26q-40 - 26q-39 + 24q-38 + 33q-37 - 23q-36 - 37q-35 + 19q-34 + 41q-33 - 17q-32 - 41q-31 + 14q-30 + 38q-29 - 8q-28 - 35q-27 + 5q-26 + 26q-25 - 21q-23 + q-22 + 9q-21 + 4q-20 - 9q-19 + 3q-18 + q-16 - 3q-15 + 4q-14 - q-13 - 2q-11 + 3q-10 - q-7 + q-6 |
4 | q-98 - 2q-97 + 2q-95 - q-94 + 3q-93 - 7q-92 + 7q-90 - q-89 + 10q-88 - 19q-87 - 8q-86 + 13q-85 + 3q-84 + 29q-83 - 28q-82 - 22q-81 + 5q-80 - 4q-79 + 58q-78 - 19q-77 - 24q-76 - 12q-75 - 34q-74 + 73q-73 + 2q-72 + 3q-71 - 18q-70 - 81q-69 + 62q-68 + 16q-67 + 47q-66 - 4q-65 - 124q-64 + 35q-63 + 16q-62 + 90q-61 + 19q-60 - 154q-59 + 10q-58 + 10q-57 + 119q-56 + 39q-55 - 168q-54 - 10q-53 + 3q-52 + 133q-51 + 53q-50 - 163q-49 - 25q-48 - 9q-47 + 126q-46 + 67q-45 - 132q-44 - 34q-43 - 31q-42 + 97q-41 + 73q-40 - 80q-39 - 24q-38 - 49q-37 + 49q-36 + 60q-35 - 30q-34 - 2q-33 - 46q-32 + 10q-31 + 33q-30 - 7q-29 + 15q-28 - 27q-27 - 5q-26 + 11q-25 - 3q-24 + 16q-23 - 11q-22 - 4q-21 + 2q-20 - 4q-19 + 10q-18 - 3q-17 - q-16 - 3q-14 + 4q-13 - q-9 + q-8 |
5 | - q-145 + 2q-144 - 2q-142 + q-141 - q-139 + 3q-138 + q-137 - 6q-136 - 2q-135 + 3q-134 + 2q-133 + 8q-132 + 4q-131 - 10q-130 - 16q-129 - 5q-128 + 8q-127 + 20q-126 + 22q-125 - 5q-124 - 27q-123 - 30q-122 - 10q-121 + 23q-120 + 40q-119 + 24q-118 - 7q-117 - 35q-116 - 43q-115 - 14q-114 + 21q-113 + 39q-112 + 43q-111 + 15q-110 - 29q-109 - 62q-108 - 57q-107 - 6q-106 + 66q-105 + 106q-104 + 58q-103 - 55q-102 - 148q-101 - 119q-100 + 26q-99 + 176q-98 + 187q-97 + 18q-96 - 196q-95 - 251q-94 - 66q-93 + 203q-92 + 303q-91 + 119q-90 - 201q-89 - 352q-88 - 163q-87 + 199q-86 + 383q-85 + 201q-84 - 187q-83 - 414q-82 - 232q-81 + 186q-80 + 428q-79 + 254q-78 - 174q-77 - 442q-76 - 272q-75 + 162q-74 + 446q-73 + 288q-72 - 147q-71 - 434q-70 - 303q-69 + 114q-68 + 420q-67 + 314q-66 - 80q-65 - 379q-64 - 317q-63 + 27q-62 + 333q-61 + 305q-60 + 17q-59 - 254q-58 - 286q-57 - 65q-56 + 190q-55 + 238q-54 + 85q-53 - 97q-52 - 194q-51 - 112q-50 + 62q-49 + 129q-48 + 88q-47 + 8q-46 - 88q-45 - 90q-44 - 7q-43 + 45q-42 + 48q-41 + 39q-40 - 24q-39 - 46q-38 - 17q-37 + 5q-36 + 16q-35 + 31q-34 - 3q-33 - 19q-32 - 8q-31 - 4q-30 + 19q-28 + q-27 - 7q-26 - 2q-25 - 3q-24 - 4q-23 + 9q-22 + 2q-21 - 2q-20 - q-18 - 3q-17 + 3q-16 + q-15 - q-11 + q-10 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 7]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 16, 6, 17], X[7, 18, 8, 1], > X[17, 6, 18, 7], X[9, 14, 10, 15], X[13, 10, 14, 11], X[15, 8, 16, 9], > X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[9, 7]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4] |
In[4]:= | DTCode[Knot[9, 7]] |
Out[4]= | DTCode[4, 12, 16, 18, 14, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[9, 7]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -2, 1, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 7]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 7]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 7]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 7]][t] |
Out[10]= | 3 7 2 9 + -- - - - 7 t + 3 t 2 t t |
In[11]:= | Conway[Knot[9, 7]][z] |
Out[11]= | 2 4 1 + 5 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 7]} |
In[13]:= | {KnotDet[Knot[9, 7]], KnotSignature[Knot[9, 7]]} |
Out[13]= | {29, -4} |
In[14]:= | Jones[Knot[9, 7]][q] |
Out[14]= | -11 2 3 4 5 5 4 3 -3 -2 -q + --- - -- + -- - -- + -- - -- + -- - q + q 10 9 8 7 6 5 4 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 7]} |
In[16]:= | A2Invariant[Knot[9, 7]][q] |
Out[16]= | -34 -28 -26 -18 -16 -12 2 -6 -q - q + q - q + q + q + --- + q 10 q |
In[17]:= | HOMFLYPT[Knot[9, 7]][a, z] |
Out[17]= | 4 6 8 10 4 2 6 2 8 2 10 2 4 4 6 4 2 a - a + a - a + 3 a z + a z + 2 a z - a z + a z + a z + 8 4 > a z |
In[18]:= | Kauffman[Knot[9, 7]][a, z] |
Out[18]= | 4 6 8 10 5 7 9 11 13 4 2 2 a + a + a + a - a z - a z - 3 a z - 2 a z + a z - 3 a z - 6 2 8 2 10 2 12 2 5 3 7 3 9 3 > 2 a z - 4 a z - 2 a z + 3 a z - a z + 2 a z + 11 a z + 11 3 13 3 4 4 8 4 10 4 12 4 5 5 > 5 a z - 3 a z + a z + 7 a z + 2 a z - 6 a z + a z - 7 5 9 5 11 5 13 5 6 6 8 6 10 6 > a z - 9 a z - 6 a z + a z + a z - 3 a z - 2 a z + 12 6 7 7 9 7 11 7 8 8 10 8 > 2 a z + a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 7]], Vassiliev[3][Knot[9, 7]]} |
Out[19]= | {5, -12} |
In[20]:= | Kh[Knot[9, 7]][q, t] |
Out[20]= | -5 -3 1 1 1 2 1 2 2 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 23 9 21 8 19 8 19 7 17 7 17 6 15 6 q t q t q t q t q t q t q t 3 2 2 3 2 2 1 2 1 > ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- 15 5 13 5 13 4 11 4 11 3 9 3 9 2 7 2 5 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 7], 2][q] |
Out[21]= | -31 2 5 6 3 12 7 9 18 6 16 22 4 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 30 28 27 26 25 24 23 22 21 20 19 18 q q q q q q q q q q q q 19 21 2 16 14 9 7 3 3 -5 -4 > --- + --- - --- - --- + --- - --- + --- - -- + -- - q + q 17 16 15 14 13 11 10 8 7 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 97 |
|