© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 96Visit 96's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3 |
Gauss Code: | {-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 12 14 16 18 2 10 6 8 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 4t-2 + 5t-1 - 5 + 5t - 4t2 + 2t3 |
Conway Polynomial: | 1 + 7z2 + 8z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {27, -6} |
Jones Polynomial: | - q-12 + 2q-11 - 3q-10 + 4q-9 - 5q-8 + 4q-7 - 3q-6 + 3q-5 - q-4 + q-3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-36 - 2q-26 - q-22 + q-20 + 2q-18 + q-16 + 2q-14 + q-10 |
HOMFLY-PT Polynomial: | 3a6 + 7a6z2 + 5a6z4 + a6z6 - a8 + 3a8z2 + 4a8z4 + a8z6 - a10 - 3a10z2 - a10z4 |
Kauffman Polynomial: | - 3a6 + 7a6z2 - 5a6z4 + a6z6 + 2a7z - 3a7z5 + a7z7 - a8 + a8z2 + a8z4 - 3a8z6 + a8z8 - a9z + 8a9z3 - 10a9z5 + 3a9z7 + a10 - 3a10z2 + 2a10z4 - 2a10z6 + a10z8 - 2a11z + 6a11z3 - 5a11z5 + 2a11z7 + a12z2 - 2a12z4 + 2a12z6 - a13z3 + 2a13z5 - 2a14z2 + 2a14z4 - a15z + a15z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {7, -18} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 96. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-33 - 2q-32 + 4q-30 - 5q-29 + q-28 + 7q-27 - 11q-26 + 3q-25 + 11q-24 - 16q-23 + 3q-22 + 14q-21 - 16q-20 + q-19 + 14q-18 - 13q-17 - 2q-16 + 12q-15 - 8q-14 - 4q-13 + 9q-12 - 3q-11 - 3q-10 + 4q-9 - q-7 + q-6 |
3 | - q-63 + 2q-62 - q-60 - 3q-59 + 3q-58 + 3q-57 - 2q-56 - 4q-55 + 2q-54 + 3q-53 - 2q-52 - q-51 + 3q-50 - 3q-49 - 4q-48 + 6q-47 + 8q-46 - 9q-45 - 10q-44 + 9q-43 + 14q-42 - 10q-41 - 13q-40 + 5q-39 + 16q-38 - 4q-37 - 16q-36 + 15q-34 + 5q-33 - 17q-32 - 6q-31 + 13q-30 + 14q-29 - 16q-28 - 12q-27 + 8q-26 + 18q-25 - 9q-24 - 14q-23 + 17q-21 - 2q-20 - 9q-19 - 4q-18 + 9q-17 + 2q-16 - 3q-15 - 3q-14 + 3q-13 + q-12 - q-10 + q-9 |
4 | q-102 - 2q-101 + q-99 + 5q-97 - 7q-96 - q-95 + 16q-92 - 12q-91 - 3q-90 - 7q-89 - 4q-88 + 32q-87 - 10q-86 - 2q-85 - 22q-84 - 18q-83 + 49q-82 + 3q-81 + 10q-80 - 39q-79 - 47q-78 + 56q-77 + 21q-76 + 34q-75 - 48q-74 - 76q-73 + 52q-72 + 26q-71 + 57q-70 - 42q-69 - 91q-68 + 45q-67 + 19q-66 + 66q-65 - 34q-64 - 88q-63 + 44q-62 + 7q-61 + 60q-60 - 24q-59 - 75q-58 + 42q-57 - 6q-56 + 48q-55 - 13q-54 - 56q-53 + 37q-52 - 22q-51 + 34q-50 - q-49 - 32q-48 + 35q-47 - 36q-46 + 15q-45 + 4q-44 - 9q-43 + 40q-42 - 40q-41 - 4q-40 - q-39 + 2q-38 + 45q-37 - 27q-36 - 13q-35 - 13q-34 - q-33 + 41q-32 - 9q-31 - 8q-30 - 16q-29 - 8q-28 + 25q-27 + q-26 + q-25 - 9q-24 - 9q-23 + 10q-22 + q-21 + 3q-20 - 2q-19 - 4q-18 + 3q-17 + q-15 - q-13 + q-12 |
5 | - q-150 + 2q-149 - q-147 - 2q-145 - q-144 + 5q-143 + 3q-142 - 3q-141 - q-140 - 7q-139 - 5q-138 + 10q-137 + 11q-136 + 3q-135 - 5q-134 - 17q-133 - 16q-132 + 10q-131 + 28q-130 + 21q-129 - 7q-128 - 38q-127 - 39q-126 + 4q-125 + 54q-124 + 61q-123 + 2q-122 - 71q-121 - 90q-120 - 15q-119 + 89q-118 + 125q-117 + 40q-116 - 107q-115 - 167q-114 - 66q-113 + 117q-112 + 203q-111 + 102q-110 - 116q-109 - 241q-108 - 134q-107 + 111q-106 + 258q-105 + 166q-104 - 97q-103 - 271q-102 - 184q-101 + 81q-100 + 267q-99 + 202q-98 - 70q-97 - 265q-96 - 196q-95 + 55q-94 + 251q-93 + 201q-92 - 52q-91 - 242q-90 - 187q-89 + 42q-88 + 224q-87 + 184q-86 - 36q-85 - 208q-84 - 174q-83 + 25q-82 + 188q-81 + 163q-80 - 10q-79 - 159q-78 - 159q-77 - q-76 + 139q-75 + 132q-74 + 18q-73 - 99q-72 - 127q-71 - 24q-70 + 82q-69 + 88q-68 + 29q-67 - 42q-66 - 78q-65 - 23q-64 + 35q-63 + 34q-62 + 16q-61 - 10q-60 - 27q-59 + q-58 + 21q-57 - 8q-56 - 12q-55 - 9q-54 - 5q-53 + 26q-52 + 34q-51 - 11q-50 - 29q-49 - 26q-48 - 12q-47 + 23q-46 + 47q-45 + 7q-44 - 17q-43 - 30q-42 - 25q-41 + 4q-40 + 33q-39 + 18q-38 + 3q-37 - 14q-36 - 22q-35 - 9q-34 + 13q-33 + 9q-32 + 9q-31 - 9q-29 - 8q-28 + 4q-27 + q-26 + 3q-25 + 3q-24 - 2q-23 - 3q-22 + 2q-21 + q-18 - q-16 + q-15 |
6 | q-207 - 2q-206 + q-204 + 2q-202 - 2q-201 + 3q-200 - 7q-199 + 4q-197 - q-196 + 7q-195 - 2q-194 + 7q-193 - 20q-192 - 3q-191 + 5q-190 - 2q-189 + 18q-188 + 6q-187 + 17q-186 - 41q-185 - 11q-184 - 2q-183 - 6q-182 + 35q-181 + 26q-180 + 32q-179 - 72q-178 - 26q-177 - 14q-176 - 7q-175 + 66q-174 + 58q-173 + 41q-172 - 123q-171 - 63q-170 - 30q-169 + 13q-168 + 136q-167 + 122q-166 + 41q-165 - 222q-164 - 157q-163 - 74q-162 + 58q-161 + 275q-160 + 251q-159 + 63q-158 - 357q-157 - 329q-156 - 184q-155 + 80q-154 + 450q-153 + 453q-152 + 150q-151 - 457q-150 - 519q-149 - 352q-148 + 27q-147 + 566q-146 + 646q-145 + 293q-144 - 464q-143 - 628q-142 - 499q-141 - 81q-140 + 578q-139 + 743q-138 + 411q-137 - 410q-136 - 634q-135 - 559q-134 - 165q-133 + 529q-132 + 744q-131 + 459q-130 - 360q-129 - 588q-128 - 550q-127 - 198q-126 + 474q-125 + 698q-124 + 468q-123 - 319q-122 - 535q-121 - 523q-120 - 218q-119 + 410q-118 + 640q-117 + 480q-116 - 253q-115 - 465q-114 - 502q-113 - 262q-112 + 313q-111 + 565q-110 + 506q-109 - 149q-108 - 362q-107 - 471q-106 - 323q-105 + 179q-104 + 457q-103 + 517q-102 - 24q-101 - 222q-100 - 405q-99 - 365q-98 + 32q-97 + 310q-96 + 478q-95 + 74q-94 - 68q-93 - 286q-92 - 344q-91 - 85q-90 + 144q-89 + 371q-88 + 99q-87 + 49q-86 - 139q-85 - 243q-84 - 123q-83 + 16q-82 + 229q-81 + 43q-80 + 82q-79 - 32q-78 - 112q-77 - 77q-76 - 25q-75 + 127q-74 - 34q-73 + 38q-72 - 9q-71 - 33q-70 - 15q-69 + 5q-68 + 101q-67 - 55q-66 - 9q-65 - 40q-64 - 29q-63 - 6q-62 + 29q-61 + 110q-60 - 19q-59 - 5q-58 - 49q-57 - 46q-56 - 35q-55 + 9q-54 + 88q-53 + 14q-52 + 23q-51 - 19q-50 - 32q-49 - 47q-48 - 18q-47 + 42q-46 + 10q-45 + 28q-44 + 6q-43 - 4q-42 - 28q-41 - 20q-40 + 13q-39 - 3q-38 + 12q-37 + 8q-36 + 6q-35 - 9q-34 - 9q-33 + 5q-32 - 4q-31 + 2q-30 + 2q-29 + 4q-28 - 2q-27 - 3q-26 + 3q-25 - q-24 + q-21 - q-19 + q-18 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 6]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], > X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11], > X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[9, 6]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5] |
In[4]:= | DTCode[Knot[9, 6]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 2, 10, 6, 8] |
In[5]:= | br = BR[Knot[9, 6]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[9, 6]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[9, 6]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 6]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 6]][t] |
Out[10]= | 2 4 5 2 3 -5 + -- - -- + - + 5 t - 4 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[9, 6]][z] |
Out[11]= | 2 4 6 1 + 7 z + 8 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 6]} |
In[13]:= | {KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]} |
Out[13]= | {27, -6} |
In[14]:= | Jones[Knot[9, 6]][q] |
Out[14]= | -12 2 3 4 5 4 3 3 -4 -3 -q + --- - --- + -- - -- + -- - -- + -- - q + q 11 10 9 8 7 6 5 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 6]} |
In[16]:= | A2Invariant[Knot[9, 6]][q] |
Out[16]= | -36 2 -22 -20 2 -16 2 -10 -q - --- - q + q + --- + q + --- + q 26 18 14 q q q |
In[17]:= | HOMFLYPT[Knot[9, 6]][a, z] |
Out[17]= | 6 8 10 6 2 8 2 10 2 6 4 8 4 10 4 3 a - a - a + 7 a z + 3 a z - 3 a z + 5 a z + 4 a z - a z + 6 6 8 6 > a z + a z |
In[18]:= | Kauffman[Knot[9, 6]][a, z] |
Out[18]= | 6 8 10 7 9 11 15 6 2 8 2 -3 a - a + a + 2 a z - a z - 2 a z - a z + 7 a z + a z - 10 2 12 2 14 2 9 3 11 3 13 3 15 3 > 3 a z + a z - 2 a z + 8 a z + 6 a z - a z + a z - 6 4 8 4 10 4 12 4 14 4 7 5 9 5 > 5 a z + a z + 2 a z - 2 a z + 2 a z - 3 a z - 10 a z - 11 5 13 5 6 6 8 6 10 6 12 6 7 7 > 5 a z + 2 a z + a z - 3 a z - 2 a z + 2 a z + a z + 9 7 11 7 8 8 10 8 > 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]} |
Out[19]= | {7, -18} |
In[20]:= | Kh[Knot[9, 6]][q, t] |
Out[20]= | -7 -5 1 1 1 2 1 2 2 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 25 9 23 8 21 8 21 7 19 7 19 6 17 6 q t q t q t q t q t q t q t 3 2 1 3 2 1 1 2 1 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ---- 17 5 15 5 15 4 13 4 13 3 11 3 11 2 9 2 7 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 6], 2][q] |
Out[21]= | -33 2 4 5 -28 7 11 3 11 16 3 14 16 q - --- + --- - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + 32 30 29 27 26 25 24 23 22 21 20 q q q q q q q q q q q -19 14 13 2 12 8 4 9 3 3 4 -7 -6 > q + --- - --- - --- + --- - --- - --- + --- - --- - --- + -- - q + q 18 17 16 15 14 13 12 11 10 9 q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 96 |
|