© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 95Visit 95's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X6271 X14,6,15,5 X18,8,1,7 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2,14,3,13 X12,4,13,3 X4,12,5,11 |
Gauss Code: | {1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 12 14 18 16 4 2 10 8 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 6t-1 - 11 + 6t |
Conway Polynomial: | 1 + 6z2 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {23, 2} |
Jones Polynomial: | q - 2q2 + 3q3 - 3q4 + 4q5 - 3q6 + 3q7 - 2q8 + q9 - q10 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q2 - q4 + q8 + q12 + q14 + q16 + q18 + q22 - q26 - q30 - q32 |
HOMFLY-PT Polynomial: | - a-10 + a-8z2 + a-6 + 2a-6z2 + a-4 + 2a-4z2 + a-2z2 |
Kauffman Polynomial: | - 6a-11z + 11a-11z3 - 6a-11z5 + a-11z7 + a-10 - 3a-10z2 + 7a-10z4 - 5a-10z6 + a-10z8 - 6a-9z + 18a-9z3 - 14a-9z5 + 3a-9z7 + 4a-8z2 - 3a-8z4 - 2a-8z6 + a-8z8 + a-7z3 - 5a-7z5 + 2a-7z7 - a-6 + 3a-6z2 - 7a-6z4 + 3a-6z6 - 4a-5z3 + 3a-5z5 + a-4 - 3a-4z2 + 3a-4z4 + 2a-3z3 + a-2z2 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, 15} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 95. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q2 - 2q3 + q4 + 3q5 - 5q6 + 3q7 + 3q8 - 7q9 + 5q10 + 3q11 - 8q12 + 5q13 + 5q14 - 10q15 + 4q16 + 6q17 - 9q18 + 2q19 + 6q20 - 7q21 + 5q23 - 4q24 - q25 + 3q26 - q27 - q28 + q29 |
3 | q3 - 2q4 + q5 + q6 + q7 - 3q8 + 3q10 + q11 - 3q12 - q13 + 2q14 + 3q15 - 2q16 - 2q17 - 2q18 + 6q19 - 2q21 - 4q22 + 5q23 - 2q26 + 3q27 - 4q28 + q29 + 2q30 - 6q32 + 2q33 + 5q34 - q35 - 6q36 + q37 + 7q38 - q39 - 7q40 - q41 + 8q42 + q43 - 6q44 - 4q45 + 7q46 + 3q47 - 3q48 - 5q49 + 3q50 + 3q51 - 3q53 + q55 + q56 - q57 |
4 | q4 - 2q5 + q6 + q7 - q8 + 3q9 - 6q10 + 3q11 + 2q12 - q13 + 6q14 - 14q15 + 5q16 + 5q17 + 2q18 + 7q19 - 24q20 + 5q21 + 10q22 + 9q23 + 8q24 - 36q25 + q26 + 15q27 + 18q28 + 12q29 - 46q30 - 6q31 + 14q32 + 25q33 + 20q34 - 49q35 - 8q36 + 9q37 + 22q38 + 25q39 - 44q40 - 6q41 + 5q42 + 14q43 + 25q44 - 39q45 - q46 + 4q47 + 7q48 + 23q49 - 33q50 + 2q51 + 2q52 + 2q53 + 22q54 - 26q55 + 5q56 - 4q58 + 20q59 - 19q60 + 8q61 - 8q63 + 14q64 - 16q65 + 9q66 + 4q67 - 7q68 + 8q69 - 16q70 + 7q71 + 7q72 - q73 + 6q74 - 16q75 + q76 + 5q77 + 3q78 + 8q79 - 11q80 - 3q81 + 2q83 + 8q84 - 4q85 - 2q86 - 2q87 - q88 + 4q89 - q92 - q93 + q94 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 5]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[18, 8, 1, 7], X[16, 10, 17, 9], > X[10, 16, 11, 15], X[8, 18, 9, 17], X[2, 14, 3, 13], X[12, 4, 13, 3], > X[4, 12, 5, 11]] |
In[3]:= | GaussCode[Knot[9, 5]] |
Out[3]= | GaussCode[1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3] |
In[4]:= | DTCode[Knot[9, 5]] |
Out[4]= | DTCode[6, 12, 14, 18, 16, 4, 2, 10, 8] |
In[5]:= | br = BR[Knot[9, 5]] |
Out[5]= | BR[5, {1, 1, 2, -1, 2, 2, 3, -2, 3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[9, 5]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 5]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 5]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 1, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 5]][t] |
Out[10]= | 6 -11 + - + 6 t t |
In[11]:= | Conway[Knot[9, 5]][z] |
Out[11]= | 2 1 + 6 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 5]} |
In[13]:= | {KnotDet[Knot[9, 5]], KnotSignature[Knot[9, 5]]} |
Out[13]= | {23, 2} |
In[14]:= | Jones[Knot[9, 5]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 q - 2 q + 3 q - 3 q + 4 q - 3 q + 3 q - 2 q + q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 5]} |
In[16]:= | A2Invariant[Knot[9, 5]][q] |
Out[16]= | 2 4 8 12 14 16 18 22 26 30 32 q - q + q + q + q + q + q + q - q - q - q |
In[17]:= | HOMFLYPT[Knot[9, 5]][a, z] |
Out[17]= | 2 2 2 2 -10 -6 -4 z 2 z 2 z z -a + a + a + -- + ---- + ---- + -- 8 6 4 2 a a a a |
In[18]:= | Kauffman[Knot[9, 5]][a, z] |
Out[18]= | 2 2 2 2 2 3 3 -10 -6 -4 6 z 6 z 3 z 4 z 3 z 3 z z 11 z 18 z a - a + a - --- - --- - ---- + ---- + ---- - ---- + -- + ----- + ----- + 11 9 10 8 6 4 2 11 9 a a a a a a a a a 3 3 3 4 4 4 4 5 5 5 5 z 4 z 2 z 7 z 3 z 7 z 3 z 6 z 14 z 5 z 3 z > -- - ---- + ---- + ---- - ---- - ---- + ---- - ---- - ----- - ---- + ---- - 7 5 3 10 8 6 4 11 9 7 5 a a a a a a a a a a a 6 6 6 7 7 7 8 8 5 z 2 z 3 z z 3 z 2 z z z > ---- - ---- + ---- + --- + ---- + ---- + --- + -- 10 8 6 11 9 7 10 8 a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[9, 5]], Vassiliev[3][Knot[9, 5]]} |
Out[19]= | {6, 15} |
In[20]:= | Kh[Knot[9, 5]][q, t] |
Out[20]= | 3 3 5 2 7 2 7 3 9 3 9 4 11 4 q + q + 2 q t + q t + 2 q t + 2 q t + q t + 2 q t + 2 q t + 11 5 13 5 13 6 15 6 17 7 17 8 21 9 > q t + 2 q t + 2 q t + q t + 2 q t + q t + q t |
In[21]:= | ColouredJones[Knot[9, 5], 2][q] |
Out[21]= | 2 3 4 5 6 7 8 9 10 11 12 q - 2 q + q + 3 q - 5 q + 3 q + 3 q - 7 q + 5 q + 3 q - 8 q + 13 14 15 16 17 18 19 20 21 > 5 q + 5 q - 10 q + 4 q + 6 q - 9 q + 2 q + 6 q - 7 q + 23 24 25 26 27 28 29 > 5 q - 4 q - q + 3 q - q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 95 |
|