© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 94Visit 94's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1627 X3,12,4,13 X7,18,8,1 X9,16,10,17 X15,10,16,11 X17,8,18,9 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
Gauss Code: | {-1, 8, -2, 9, -7, 1, -3, 6, -4, 5, -8, 2, -9, 7, -5, 4, -6, 3} |
DT (Dowker-Thistlethwaite) Code: | 6 12 14 18 16 2 4 10 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 5t-1 + 5 - 5t + 3t2 |
Conway Polynomial: | 1 + 7z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {21, -4} |
Jones Polynomial: | - q-11 + q-10 - 2q-9 + 3q-8 - 3q-7 + 4q-6 - 3q-5 + 2q-4 - q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-34 - q-32 - q-30 - q-28 + q-26 + q-24 + q-22 + q-20 + q-16 + q-10 + q-6 |
HOMFLY-PT Polynomial: | a4 + 3a4z2 + a4z4 + 2a6z2 + a6z4 + 2a8 + 3a8z2 + a8z4 - 2a10 - a10z2 |
Kauffman Polynomial: | a4 - 3a4z2 + a4z4 - 2a5z3 + a5z5 + a6z2 - 2a6z4 + a6z6 + 4a7z3 - 3a7z5 + a7z7 + 2a8 - 7a8z2 + 11a8z4 - 5a8z6 + a8z8 - 4a9z + 12a9z3 - 8a9z5 + 2a9z7 + 2a10 - 10a10z2 + 11a10z4 - 5a10z6 + a10z8 - a11z + 2a11z3 - 3a11z5 + a11z7 + a12z2 - 3a12z4 + a12z6 + 3a13z - 4a13z3 + a13z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {7, -19} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 94. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-31 - q-30 + 2q-28 - 3q-27 - q-26 + 5q-25 - 4q-24 - 3q-23 + 8q-22 - 4q-21 - 6q-20 + 10q-19 - 3q-18 - 8q-17 + 11q-16 - 3q-15 - 7q-14 + 8q-13 - q-12 - 4q-11 + 4q-10 - 2q-8 + 2q-7 - q-5 + q-4 |
3 | - q-60 + q-59 - q-56 + 2q-55 - q-53 - 2q-52 + 4q-51 + q-50 - 3q-49 - 5q-48 + 5q-47 + 5q-46 - 3q-45 - 7q-44 + 2q-43 + 8q-42 - 8q-40 - 3q-39 + 9q-38 + 4q-37 - 7q-36 - 8q-35 + 9q-34 + 6q-33 - 7q-32 - 10q-31 + 10q-30 + 6q-29 - 6q-28 - 8q-27 + 6q-26 + 6q-25 - 3q-24 - 5q-23 + 2q-22 + 2q-21 + q-20 - 2q-19 + q-18 - q-17 + q-16 - q-15 + 2q-14 - q-13 - q-11 + 2q-10 - q-7 + q-6 |
4 | q-98 - q-97 - q-94 + 2q-93 - 2q-92 + q-91 + q-90 - 3q-89 + 3q-88 - 4q-87 + 2q-86 + 5q-85 - 4q-84 + 4q-83 - 9q-82 + 8q-80 - 2q-79 + 9q-78 - 14q-77 - 4q-76 + 7q-75 - 3q-74 + 17q-73 - 13q-72 - 4q-71 + 3q-70 - 11q-69 + 22q-68 - 8q-67 + q-66 + 2q-65 - 22q-64 + 21q-63 - 4q-62 + 10q-61 + 3q-60 - 32q-59 + 18q-58 - 2q-57 + 16q-56 + 4q-55 - 37q-54 + 17q-53 - 2q-52 + 18q-51 + 4q-50 - 39q-49 + 18q-48 - 2q-47 + 18q-46 + 6q-45 - 36q-44 + 13q-43 - 4q-42 + 17q-41 + 9q-40 - 27q-39 + 7q-38 - 9q-37 + 11q-36 + 13q-35 - 13q-34 + 4q-33 - 13q-32 + 3q-31 + 11q-30 - 4q-29 + 7q-28 - 11q-27 - 2q-26 + 5q-25 - q-24 + 8q-23 - 6q-22 - 2q-21 + q-20 - 2q-19 + 6q-18 - 2q-17 - q-16 - 2q-14 + 3q-13 - q-9 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 4]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 18, 8, 1], X[9, 16, 10, 17], > X[15, 10, 16, 11], X[17, 8, 18, 9], X[5, 14, 6, 15], X[11, 2, 12, 3], > X[13, 4, 14, 5]] |
In[3]:= | GaussCode[Knot[9, 4]] |
Out[3]= | GaussCode[-1, 8, -2, 9, -7, 1, -3, 6, -4, 5, -8, 2, -9, 7, -5, 4, -6, 3] |
In[4]:= | DTCode[Knot[9, 4]] |
Out[4]= | DTCode[6, 12, 14, 18, 16, 2, 4, 10, 8] |
In[5]:= | br = BR[Knot[9, 4]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -1, -2, 1, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 4]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 4]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 4]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 7}, 1} |
In[10]:= | alex = Alexander[Knot[9, 4]][t] |
Out[10]= | 3 5 2 5 + -- - - - 5 t + 3 t 2 t t |
In[11]:= | Conway[Knot[9, 4]][z] |
Out[11]= | 2 4 1 + 7 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 4]} |
In[13]:= | {KnotDet[Knot[9, 4]], KnotSignature[Knot[9, 4]]} |
Out[13]= | {21, -4} |
In[14]:= | Jones[Knot[9, 4]][q] |
Out[14]= | -11 -10 2 3 3 4 3 2 -3 -2 -q + q - -- + -- - -- + -- - -- + -- - q + q 9 8 7 6 5 4 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 4]} |
In[16]:= | A2Invariant[Knot[9, 4]][q] |
Out[16]= | -34 -32 -30 -28 -26 -24 -22 -20 -16 -10 -6 -q - q - q - q + q + q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[9, 4]][a, z] |
Out[17]= | 4 8 10 4 2 6 2 8 2 10 2 4 4 6 4 8 4 a + 2 a - 2 a + 3 a z + 2 a z + 3 a z - a z + a z + a z + a z |
In[18]:= | Kauffman[Knot[9, 4]][a, z] |
Out[18]= | 4 8 10 9 11 13 4 2 6 2 8 2 a + 2 a + 2 a - 4 a z - a z + 3 a z - 3 a z + a z - 7 a z - 10 2 12 2 5 3 7 3 9 3 11 3 13 3 > 10 a z + a z - 2 a z + 4 a z + 12 a z + 2 a z - 4 a z + 4 4 6 4 8 4 10 4 12 4 5 5 7 5 > a z - 2 a z + 11 a z + 11 a z - 3 a z + a z - 3 a z - 9 5 11 5 13 5 6 6 8 6 10 6 12 6 7 7 > 8 a z - 3 a z + a z + a z - 5 a z - 5 a z + a z + a z + 9 7 11 7 8 8 10 8 > 2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 4]], Vassiliev[3][Knot[9, 4]]} |
Out[19]= | {7, -19} |
In[20]:= | Kh[Knot[9, 4]][q, t] |
Out[20]= | -5 -3 1 1 2 1 2 2 1 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 23 9 19 8 19 7 17 6 15 6 15 5 13 5 q t q t q t q t q t q t q t 2 2 1 2 1 1 1 > ------ + ------ + ------ + ----- + ----- + ----- + ---- 13 4 11 4 11 3 9 3 9 2 7 2 5 q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 4], 2][q] |
Out[21]= | -31 -30 2 3 -26 5 4 3 8 4 6 10 q - q + --- - --- - q + --- - --- - --- + --- - --- - --- + --- - 28 27 25 24 23 22 21 20 19 q q q q q q q q q 3 8 11 3 7 8 -12 4 4 2 2 -5 -4 > --- - --- + --- - --- - --- + --- - q - --- + --- - -- + -- - q + q 18 17 16 15 14 13 11 10 8 7 q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 94 |
|