© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 910Visit 910's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 910's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13 |
Gauss Code: | {1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3} |
DT (Dowker-Thistlethwaite) Code: | 8 12 14 16 18 2 6 4 10 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 4t-2 - 8t-1 + 9 - 8t + 4t2 |
Conway Polynomial: | 1 + 8z2 + 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {33, 4} |
Jones Polynomial: | q2 - 2q3 + 4q4 - 5q5 + 6q6 - 5q7 + 5q8 - 3q9 + q10 - q11 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q6 - q8 + q10 + 2q16 + 2q20 + q22 + q24 + q26 - 2q28 - q30 - q32 - q34 |
HOMFLY-PT Polynomial: | - 2a-10 - a-10z2 + a-8 + 2a-8z2 + a-8z4 + 2a-6 + 5a-6z2 + 2a-6z4 + 2a-4z2 + a-4z4 |
Kauffman Polynomial: | 4a-13z - 4a-13z3 + a-13z5 - 2a-12z4 + a-12z6 - a-11z3 - a-11z5 + a-11z7 + 2a-10 - 11a-10z2 + 9a-10z4 - 3a-10z6 + a-10z8 - 4a-9z + 9a-9z3 - 7a-9z5 + 3a-9z7 + a-8 - 2a-8z2 + 3a-8z4 - a-8z6 + a-8z8 + 3a-7z3 - 3a-7z5 + 2a-7z7 - 2a-6 + 7a-6z2 - 7a-6z4 + 3a-6z6 - 3a-5z3 + 2a-5z5 - 2a-4z2 + a-4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {8, 22} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 910. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q4 - 2q5 + q6 + 5q7 - 8q8 + 15q10 - 16q11 - 5q12 + 28q13 - 22q14 - 11q15 + 35q16 - 22q17 - 13q18 + 32q19 - 15q20 - 14q21 + 22q22 - 7q23 - 10q24 + 10q25 - 2q26 - 4q27 + 3q28 - q30 + q31 |
3 | q6 - 2q7 + q8 + 2q9 + q10 - 6q11 + 9q13 + 4q14 - 17q15 - 6q16 + 21q17 + 19q18 - 32q19 - 28q20 + 35q21 + 46q22 - 41q23 - 60q24 + 41q25 + 77q26 - 43q27 - 84q28 + 36q29 + 94q30 - 37q31 - 90q32 + 24q33 + 94q34 - 22q35 - 81q36 + 7q37 + 76q38 - q39 - 62q40 - 10q41 + 50q42 + 13q43 - 37q44 - 13q45 + 21q46 + 16q47 - 16q48 - 7q49 + 5q50 + 8q51 - 5q52 - q53 + 3q55 - 2q56 + q59 - q60 |
4 | q8 - 2q9 + q10 + 2q11 - 2q12 + 3q13 - 7q14 + 3q15 + 8q16 - 7q17 + 8q18 - 20q19 + 5q20 + 23q21 - 10q22 + 16q23 - 51q24 - 2q25 + 48q26 + 8q27 + 44q28 - 108q29 - 43q30 + 66q31 + 55q32 + 113q33 - 168q34 - 120q35 + 50q36 + 108q37 + 220q38 - 203q39 - 203q40 + 5q41 + 139q42 + 318q43 - 204q44 - 252q45 - 44q46 + 138q47 + 373q48 - 180q49 - 261q50 - 80q51 + 114q52 + 379q53 - 137q54 - 232q55 - 107q56 + 69q57 + 349q58 - 79q59 - 172q60 - 125q61 + 8q62 + 284q63 - 14q64 - 94q65 - 122q66 - 49q67 + 193q68 + 27q69 - 22q70 - 83q71 - 72q72 + 97q73 + 28q74 + 20q75 - 35q76 - 55q77 + 34q78 + 7q79 + 21q80 - 5q81 - 25q82 + 11q83 - 6q84 + 9q85 + 2q86 - 8q87 + 6q88 - 5q89 + 2q90 + q91 - 3q92 + 3q93 - q94 - q97 + q98 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 10]] |
Out[2]= | PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17], > X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 16, 5, 15], X[14, 6, 15, 5], > X[6, 14, 7, 13]] |
In[3]:= | GaussCode[Knot[9, 10]] |
Out[3]= | GaussCode[1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3] |
In[4]:= | DTCode[Knot[9, 10]] |
Out[4]= | DTCode[8, 12, 14, 16, 18, 2, 6, 4, 10] |
In[5]:= | br = BR[Knot[9, 10]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 2, 2, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 10]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 10]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 10]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 10]][t] |
Out[10]= | 4 8 2 9 + -- - - - 8 t + 4 t 2 t t |
In[11]:= | Conway[Knot[9, 10]][z] |
Out[11]= | 2 4 1 + 8 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 10]} |
In[13]:= | {KnotDet[Knot[9, 10]], KnotSignature[Knot[9, 10]]} |
Out[13]= | {33, 4} |
In[14]:= | Jones[Knot[9, 10]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 11 q - 2 q + 4 q - 5 q + 6 q - 5 q + 5 q - 3 q + q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 10]} |
In[16]:= | A2Invariant[Knot[9, 10]][q] |
Out[16]= | 6 8 10 16 20 22 24 26 28 30 32 34 q - q + q + 2 q + 2 q + q + q + q - 2 q - q - q - q |
In[17]:= | HOMFLYPT[Knot[9, 10]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 -2 -8 2 z 2 z 5 z 2 z z 2 z z --- + a + -- - --- + ---- + ---- + ---- + -- + ---- + -- 10 6 10 8 6 4 8 6 4 a a a a a a a a a |
In[18]:= | Kauffman[Knot[9, 10]][a, z] |
Out[18]= | 2 2 2 2 3 3 3 2 -8 2 4 z 4 z 11 z 2 z 7 z 2 z 4 z z 9 z --- + a - -- + --- - --- - ----- - ---- + ---- - ---- - ---- - --- + ---- + 10 6 13 9 10 8 6 4 13 11 9 a a a a a a a a a a a 3 3 4 4 4 4 4 5 5 5 5 3 z 3 z 2 z 9 z 3 z 7 z z z z 7 z 3 z > ---- - ---- - ---- + ---- + ---- - ---- + -- + --- - --- - ---- - ---- + 7 5 12 10 8 6 4 13 11 9 7 a a a a a a a a a a a 5 6 6 6 6 7 7 7 8 8 2 z z 3 z z 3 z z 3 z 2 z z z > ---- + --- - ---- - -- + ---- + --- + ---- + ---- + --- + -- 5 12 10 8 6 11 9 7 10 8 a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[9, 10]], Vassiliev[3][Knot[9, 10]]} |
Out[19]= | {8, 22} |
In[20]:= | Kh[Knot[9, 10]][q, t] |
Out[20]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 q + q + 2 q t + 2 q t + 2 q t + 3 q t + 2 q t + 3 q t + 13 4 13 5 15 5 15 6 17 6 19 7 19 8 > 3 q t + 2 q t + 3 q t + 3 q t + 2 q t + 3 q t + q t + 23 9 > q t |
In[21]:= | ColouredJones[Knot[9, 10], 2][q] |
Out[21]= | 4 5 6 7 8 10 11 12 13 14 q - 2 q + q + 5 q - 8 q + 15 q - 16 q - 5 q + 28 q - 22 q - 15 16 17 18 19 20 21 22 > 11 q + 35 q - 22 q - 13 q + 32 q - 15 q - 14 q + 22 q - 23 24 25 26 27 28 30 31 > 7 q - 10 q + 10 q - 2 q - 4 q + 3 q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 910 |
|