© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 939Visit 939's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 939's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
Gauss Code: | {-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 18 16 2 8 4 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 3t-2 + 14t-1 - 21 + 14t - 3t2 |
Conway Polynomial: | 1 + 2z2 - 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n162, ...} |
Determinant and Signature: | {55, 2} |
Jones Polynomial: | q-1 - 3 + 6q - 8q2 + 10q3 - 9q4 + 8q5 - 6q6 + 3q7 - q8 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n11, K11n112, ...} |
A2 (sl(3)) Invariant: | q-4 - q-2 - 1 + 3q2 - q4 + 2q6 + q8 - q10 + q12 - 2q14 + 2q16 - q20 + 2q22 - q24 - q26 |
HOMFLY-PT Polynomial: | - a-8 + 2a-6 + 3a-6z2 - 2a-4 - 3a-4z2 - 2a-4z4 + 2a-2 + a-2z2 - a-2z4 + z2 |
Kauffman Polynomial: | a-9z - 2a-9z3 + a-9z5 - a-8 + 3a-8z2 - 6a-8z4 + 3a-8z6 - a-7z + 2a-7z3 - 7a-7z5 + 4a-7z7 - 2a-6 + 9a-6z2 - 13a-6z4 + 3a-6z6 + 2a-6z8 - 3a-5z + 12a-5z3 - 18a-5z5 + 9a-5z7 - 2a-4 + 12a-4z2 - 15a-4z4 + 5a-4z6 + 2a-4z8 - a-3z + 5a-3z3 - 7a-3z5 + 5a-3z7 - 2a-2 + 5a-2z2 - 7a-2z4 + 5a-2z6 - 3a-1z3 + 3a-1z5 - z2 + z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, 4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 939. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-4 - 3q-3 + 2q-2 + 7q-1 - 17 + 7q + 28q2 - 45q3 + 4q4 + 62q5 - 68q6 - 9q7 + 88q8 - 72q9 - 23q10 + 89q11 - 55q12 - 32q13 + 69q14 - 27q15 - 30q16 + 37q17 - 5q18 - 16q19 + 10q20 + q21 - 3q22 + q23 |
3 | q-9 - 3q-8 + 2q-7 + 3q-6 - 2q-5 - 10q-4 + 8q-3 + 23q-2 - 17q-1 - 49 + 25q + 91q2 - 18q3 - 156q4 + 2q5 + 220q6 + 44q7 - 288q8 - 100q9 + 336q10 + 172q11 - 373q12 - 227q13 + 372q14 + 291q15 - 370q16 - 321q17 + 331q18 + 353q19 - 293q20 - 357q21 + 229q22 + 356q23 - 162q24 - 336q25 + 91q26 + 298q27 - 25q28 - 245q29 - 25q30 + 179q31 + 58q32 - 120q33 - 59q34 + 62q35 + 51q36 - 26q37 - 33q38 + 8q39 + 16q40 - 2q41 - 5q42 - q43 + 3q44 - q45 |
4 | q-16 - 3q-15 + 2q-14 + 3q-13 - 6q-12 + 5q-11 - 9q-10 + 14q-9 + 12q-8 - 38q-7 + 3q-6 - 20q-5 + 77q-4 + 72q-3 - 128q-2 - 89q-1 - 109 + 250q + 345q2 - 174q3 - 358q4 - 521q5 + 384q6 + 950q7 + 132q8 - 612q9 - 1364q10 + 137q11 + 1614q12 + 881q13 - 489q14 - 2296q15 - 533q16 + 1925q17 + 1701q18 + 26q19 - 2863q20 - 1260q21 + 1798q22 + 2205q23 + 634q24 - 2957q25 - 1747q26 + 1419q27 + 2332q28 + 1123q29 - 2683q30 - 1969q31 + 889q32 + 2169q33 + 1508q34 - 2105q35 - 1981q36 + 220q37 + 1727q38 + 1765q39 - 1256q40 - 1713q41 - 452q42 + 1002q43 + 1710q44 - 348q45 - 1105q46 - 799q47 + 209q48 + 1217q49 + 228q50 - 380q51 - 651q52 - 254q53 + 546q54 + 286q55 + 55q56 - 268q57 - 260q58 + 116q59 + 105q60 + 108q61 - 38q62 - 100q63 + 6q64 + 5q65 + 35q66 + 4q67 - 19q68 + 2q69 - 3q70 + 5q71 + q72 - 3q73 + q74 |
5 | q-25 - 3q-24 + 2q-23 + 3q-22 - 6q-21 + q-20 + 6q-19 - 3q-18 + 3q-17 + 2q-16 - 25q-15 - 11q-14 + 35q-13 + 41q-12 + 25q-11 - 39q-10 - 129q-9 - 109q-8 + 78q-7 + 281q-6 + 280q-5 - 28q-4 - 506q-3 - 679q-2 - 192q-1 + 749 + 1346q + 768q2 - 849q3 - 2242q4 - 1862q5 + 517q6 + 3232q7 + 3563q8 + 414q9 - 3988q10 - 5645q11 - 2223q12 + 4195q13 + 7949q14 + 4709q15 - 3653q16 - 9909q17 - 7720q18 + 2243q19 + 11390q20 + 10743q21 - 208q22 - 12040q23 - 13495q24 - 2183q25 + 12021q26 + 15589q27 + 4551q28 - 11311q29 - 17086q30 - 6663q31 + 10381q32 + 17780q33 + 8360q34 - 9117q35 - 18085q36 - 9684q37 + 7990q38 + 17843q39 + 10627q40 - 6638q41 - 17433q42 - 11403q43 + 5371q44 + 16645q45 + 11986q46 - 3802q47 - 15624q48 - 12498q49 + 2110q50 + 14176q51 + 12791q52 - 134q53 - 12309q54 - 12793q55 - 1903q56 + 9944q57 + 12318q58 + 3854q59 - 7211q60 - 11228q61 - 5428q62 + 4321q63 + 9482q64 + 6351q65 - 1549q66 - 7254q67 - 6469q68 - 680q69 + 4783q70 + 5738q71 + 2201q72 - 2468q73 - 4485q74 - 2779q75 + 657q76 + 2919q77 + 2637q78 + 511q79 - 1554q80 - 2007q81 - 945q82 + 513q83 + 1245q84 + 918q85 + 50q86 - 610q87 - 649q88 - 236q89 + 212q90 + 349q91 + 211q92 - 11q93 - 159q94 - 132q95 - 20q96 + 52q97 + 47q98 + 29q99 - 8q100 - 30q101 - 6q102 + 7q103 + q104 + 3q105 + 3q106 - 5q107 - q108 + 3q109 - q110 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 39]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 11, 4, 10], X[7, 18, 8, 1], X[17, 13, 18, 12], > X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2], > X[13, 9, 14, 8]] |
In[3]:= | GaussCode[Knot[9, 39]] |
Out[3]= | GaussCode[-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3] |
In[4]:= | DTCode[Knot[9, 39]] |
Out[4]= | DTCode[6, 10, 14, 18, 16, 2, 8, 4, 12] |
In[5]:= | br = BR[Knot[9, 39]] |
Out[5]= | BR[5, {1, 1, 2, -1, -3, -2, 1, 4, 3, -2, 3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[9, 39]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 39]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 39]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 39]][t] |
Out[10]= | 3 14 2 -21 - -- + -- + 14 t - 3 t 2 t t |
In[11]:= | Conway[Knot[9, 39]][z] |
Out[11]= | 2 4 1 + 2 z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 39], Knot[11, NonAlternating, 162]} |
In[13]:= | {KnotDet[Knot[9, 39]], KnotSignature[Knot[9, 39]]} |
Out[13]= | {55, 2} |
In[14]:= | Jones[Knot[9, 39]][q] |
Out[14]= | 1 2 3 4 5 6 7 8 -3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 39], Knot[11, NonAlternating, 11], Knot[11, NonAlternating, 112]} |
In[16]:= | A2Invariant[Knot[9, 39]][q] |
Out[16]= | -4 -2 2 4 6 8 10 12 14 16 20 -1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q - q + 22 24 26 > 2 q - q - q |
In[17]:= | HOMFLYPT[Knot[9, 39]][a, z] |
Out[17]= | 2 2 2 4 4 -8 2 2 2 2 3 z 3 z z 2 z z -a + -- - -- + -- + z + ---- - ---- + -- - ---- - -- 6 4 2 6 4 2 4 2 a a a a a a a a |
In[18]:= | Kauffman[Knot[9, 39]][a, z] |
Out[18]= | 2 2 2 2 -8 2 2 2 z z 3 z z 2 3 z 9 z 12 z 5 z -a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- + ---- - 6 4 2 9 7 5 3 8 6 4 2 a a a a a a a a a a a 3 3 3 3 3 4 4 4 4 5 2 z 2 z 12 z 5 z 3 z 4 6 z 13 z 15 z 7 z z > ---- + ---- + ----- + ---- - ---- + z - ---- - ----- - ----- - ---- + -- - 9 7 5 3 a 8 6 4 2 9 a a a a a a a a a 5 5 5 5 6 6 6 6 7 7 7 z 18 z 7 z 3 z 3 z 3 z 5 z 5 z 4 z 9 z > ---- - ----- - ---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + 7 5 3 a 8 6 4 2 7 5 a a a a a a a a a 7 8 8 5 z 2 z 2 z > ---- + ---- + ---- 3 6 4 a a a |
In[19]:= | {Vassiliev[2][Knot[9, 39]], Vassiliev[3][Knot[9, 39]]} |
Out[19]= | {2, 4} |
In[20]:= | Kh[Knot[9, 39]][q, t] |
Out[20]= | 3 1 2 q 3 5 5 2 7 2 7 3 4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t + 4 q t + 3 2 q t t q t 9 3 9 4 11 4 11 5 13 5 13 6 15 6 > 5 q t + 4 q t + 4 q t + 2 q t + 4 q t + q t + 2 q t + 17 7 > q t |
In[21]:= | ColouredJones[Knot[9, 39], 2][q] |
Out[21]= | -4 3 2 7 2 3 4 5 6 7 -17 + q - -- + -- + - + 7 q + 28 q - 45 q + 4 q + 62 q - 68 q - 9 q + 3 2 q q q 8 9 10 11 12 13 14 15 > 88 q - 72 q - 23 q + 89 q - 55 q - 32 q + 69 q - 27 q - 16 17 18 19 20 21 22 23 > 30 q + 37 q - 5 q - 16 q + 10 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 939 |
|