© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 938Visit 938's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 938's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X5,14,6,15 X7,18,8,1 X15,8,16,9 X3,10,4,11 X9,4,10,5 X17,12,18,13 X11,16,12,17 X13,2,14,3 |
Gauss Code: | {-1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 18 4 16 2 8 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 5t-2 - 14t-1 + 19 - 14t + 5t2 |
Conway Polynomial: | 1 + 6z2 + 5z4 |
Other knots with the same Alexander/Conway Polynomial: | {1063, ...} |
Determinant and Signature: | {57, -4} |
Jones Polynomial: | - q-11 + 3q-10 - 6q-9 + 8q-8 - 10q-7 + 10q-6 - 8q-5 + 7q-4 - 3q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-34 + q-32 + q-30 - 3q-28 - 2q-24 - q-22 + 2q-20 + 4q-16 + q-12 + 2q-10 - 2q-8 + q-6 |
HOMFLY-PT Polynomial: | a4z2 + a4z4 + 4a6 + 7a6z2 + 3a6z4 - 3a8 - a8z2 + a8z4 - a10z2 |
Kauffman Polynomial: | - a4z2 + a4z4 - 2a5z3 + 3a5z5 - 4a6 + 9a6z2 - 10a6z4 + 6a6z6 + 3a7z - 2a7z3 - 4a7z5 + 5a7z7 - 3a8 + 10a8z2 - 15a8z4 + 6a8z6 + 2a8z8 + a9z + 5a9z3 - 15a9z5 + 9a9z7 + 3a10z2 - 10a10z4 + 3a10z6 + 2a10z8 - a11z + 3a11z3 - 7a11z5 + 4a11z7 + 3a12z2 - 6a12z4 + 3a12z6 + a13z - 2a13z3 + a13z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, -14} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 938. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-31 - 3q-30 + q-29 + 10q-28 - 16q-27 - 5q-26 + 38q-25 - 32q-24 - 27q-23 + 74q-22 - 37q-21 - 57q-20 + 98q-19 - 29q-18 - 77q-17 + 97q-16 - 14q-15 - 74q-14 + 71q-13 + 2q-12 - 50q-11 + 34q-10 + 7q-9 - 20q-8 + 8q-7 + 3q-6 - 3q-5 + q-4 |
3 | - q-60 + 3q-59 - q-58 - 5q-57 - 2q-56 + 16q-55 + 8q-54 - 33q-53 - 27q-52 + 53q-51 + 64q-50 - 65q-49 - 125q-48 + 69q-47 + 192q-46 - 41q-45 - 272q-44 - 3q-43 + 338q-42 + 71q-41 - 395q-40 - 142q-39 + 425q-38 + 224q-37 - 446q-36 - 287q-35 + 440q-34 + 343q-33 - 417q-32 - 385q-31 + 380q-30 + 399q-29 - 315q-28 - 407q-27 + 253q-26 + 369q-25 - 162q-24 - 334q-23 + 100q-22 + 257q-21 - 29q-20 - 197q-19 + 6q-18 + 117q-17 + 20q-16 - 71q-15 - 16q-14 + 34q-13 + 11q-12 - 14q-11 - 4q-10 + 4q-9 + 3q-8 - 3q-7 + q-6 |
4 | q-98 - 3q-97 + q-96 + 5q-95 - 3q-94 + 2q-93 - 19q-92 + 4q-91 + 35q-90 + 5q-89 + 7q-88 - 102q-87 - 40q-86 + 112q-85 + 111q-84 + 118q-83 - 281q-82 - 284q-81 + 77q-80 + 330q-79 + 572q-78 - 328q-77 - 743q-76 - 364q-75 + 365q-74 + 1364q-73 + 96q-72 - 1052q-71 - 1198q-70 - 131q-69 + 2086q-68 + 956q-67 - 862q-66 - 2026q-65 - 1071q-64 + 2382q-63 + 1859q-62 - 252q-61 - 2528q-60 - 2054q-59 + 2274q-58 + 2498q-57 + 459q-56 - 2672q-55 - 2790q-54 + 1921q-53 + 2809q-52 + 1093q-51 - 2515q-50 - 3202q-49 + 1373q-48 + 2768q-47 + 1606q-46 - 2008q-45 - 3221q-44 + 627q-43 + 2279q-42 + 1900q-41 - 1158q-40 - 2731q-39 - 107q-38 + 1385q-37 + 1751q-36 - 269q-35 - 1785q-34 - 473q-33 + 466q-32 + 1158q-31 + 219q-30 - 809q-29 - 377q-28 - 38q-27 + 503q-26 + 236q-25 - 231q-24 - 139q-23 - 108q-22 + 138q-21 + 95q-20 - 45q-19 - 17q-18 - 44q-17 + 25q-16 + 21q-15 - 10q-14 + 2q-13 - 8q-12 + 4q-11 + 3q-10 - 3q-9 + q-8 |
5 | - q-145 + 3q-144 - q-143 - 5q-142 + 3q-141 + 3q-140 + q-139 + 7q-138 - 6q-137 - 30q-136 - 8q-135 + 29q-134 + 46q-133 + 54q-132 - 18q-131 - 136q-130 - 163q-129 - 14q-128 + 219q-127 + 370q-126 + 221q-125 - 263q-124 - 707q-123 - 642q-122 + 100q-121 + 1054q-120 + 1356q-119 + 451q-118 - 1208q-117 - 2289q-116 - 1549q-115 + 928q-114 + 3212q-113 + 3113q-112 + 121q-111 - 3758q-110 - 5079q-109 - 1944q-108 + 3639q-107 + 6930q-106 + 4510q-105 - 2518q-104 - 8445q-103 - 7483q-102 + 522q-101 + 9150q-100 + 10483q-99 + 2285q-98 - 9040q-97 - 13152q-96 - 5441q-95 + 8050q-94 + 15262q-93 + 8704q-92 - 6553q-91 - 16664q-90 - 11685q-89 + 4643q-88 + 17498q-87 + 14306q-86 - 2746q-85 - 17823q-84 - 16377q-83 + 828q-82 + 17809q-81 + 18076q-80 + 891q-79 - 17535q-78 - 19340q-77 - 2520q-76 + 16953q-75 + 20295q-74 + 4156q-73 - 16091q-72 - 20919q-71 - 5739q-70 + 14737q-69 + 21044q-68 + 7498q-67 - 12892q-66 - 20712q-65 - 9024q-64 + 10432q-63 + 19516q-62 + 10499q-61 - 7573q-60 - 17656q-59 - 11246q-58 + 4438q-57 + 14870q-56 + 11480q-55 - 1536q-54 - 11714q-53 - 10595q-52 - 908q-51 + 8197q-50 + 9222q-49 + 2424q-48 - 5137q-47 - 7067q-46 - 3103q-45 + 2512q-44 + 5037q-43 + 2975q-42 - 904q-41 - 3040q-40 - 2379q-39 - 80q-38 + 1658q-37 + 1631q-36 + 373q-35 - 729q-34 - 953q-33 - 394q-32 + 270q-31 + 477q-30 + 267q-29 - 54q-28 - 224q-27 - 145q-26 + 11q-25 + 82q-24 + 55q-23 + 22q-22 - 37q-21 - 33q-20 + 7q-19 + 12q-18 + 6q-16 - 2q-15 - 8q-14 + 4q-13 + 3q-12 - 3q-11 + q-10 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 38]] |
Out[2]= | PD[X[1, 6, 2, 7], X[5, 14, 6, 15], X[7, 18, 8, 1], X[15, 8, 16, 9], > X[3, 10, 4, 11], X[9, 4, 10, 5], X[17, 12, 18, 13], X[11, 16, 12, 17], > X[13, 2, 14, 3]] |
In[3]:= | GaussCode[Knot[9, 38]] |
Out[3]= | GaussCode[-1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3] |
In[4]:= | DTCode[Knot[9, 38]] |
Out[4]= | DTCode[6, 10, 14, 18, 4, 16, 2, 8, 12] |
In[5]:= | br = BR[Knot[9, 38]] |
Out[5]= | BR[4, {-1, -1, -2, -2, 3, -2, 1, -2, -3, -3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 38]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 38]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 38]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 3, {4, 7}, 2} |
In[10]:= | alex = Alexander[Knot[9, 38]][t] |
Out[10]= | 5 14 2 19 + -- - -- - 14 t + 5 t 2 t t |
In[11]:= | Conway[Knot[9, 38]][z] |
Out[11]= | 2 4 1 + 6 z + 5 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 38], Knot[10, 63]} |
In[13]:= | {KnotDet[Knot[9, 38]], KnotSignature[Knot[9, 38]]} |
Out[13]= | {57, -4} |
In[14]:= | Jones[Knot[9, 38]][q] |
Out[14]= | -11 3 6 8 10 10 8 7 3 -2 -q + --- - -- + -- - -- + -- - -- + -- - -- + q 10 9 8 7 6 5 4 3 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 38]} |
In[16]:= | A2Invariant[Knot[9, 38]][q] |
Out[16]= | -34 -32 -30 3 2 -22 2 4 -12 2 2 -6 -q + q + q - --- - --- - q + --- + --- + q + --- - -- + q 28 24 20 16 10 8 q q q q q q |
In[17]:= | HOMFLYPT[Knot[9, 38]][a, z] |
Out[17]= | 6 8 4 2 6 2 8 2 10 2 4 4 6 4 8 4 4 a - 3 a + a z + 7 a z - a z - a z + a z + 3 a z + a z |
In[18]:= | Kauffman[Knot[9, 38]][a, z] |
Out[18]= | 6 8 7 9 11 13 4 2 6 2 8 2 -4 a - 3 a + 3 a z + a z - a z + a z - a z + 9 a z + 10 a z + 10 2 12 2 5 3 7 3 9 3 11 3 13 3 > 3 a z + 3 a z - 2 a z - 2 a z + 5 a z + 3 a z - 2 a z + 4 4 6 4 8 4 10 4 12 4 5 5 7 5 > a z - 10 a z - 15 a z - 10 a z - 6 a z + 3 a z - 4 a z - 9 5 11 5 13 5 6 6 8 6 10 6 12 6 > 15 a z - 7 a z + a z + 6 a z + 6 a z + 3 a z + 3 a z + 7 7 9 7 11 7 8 8 10 8 > 5 a z + 9 a z + 4 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[9, 38]], Vassiliev[3][Knot[9, 38]]} |
Out[19]= | {6, -14} |
In[20]:= | Kh[Knot[9, 38]][q, t] |
Out[20]= | -5 -3 1 2 1 4 2 4 4 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 23 9 21 8 19 8 19 7 17 7 17 6 15 6 q t q t q t q t q t q t q t 6 4 4 6 4 4 3 4 3 > ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- 15 5 13 5 13 4 11 4 11 3 9 3 9 2 7 2 5 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 38], 2][q] |
Out[21]= | -31 3 -29 10 16 5 38 32 27 74 37 57 98 q - --- + q + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 30 28 27 26 25 24 23 22 21 20 19 q q q q q q q q q q q 29 77 97 14 74 71 2 50 34 7 20 8 3 > --- - --- + --- - --- - --- + --- + --- - --- + --- + -- - -- + -- + -- - 18 17 16 15 14 13 12 11 10 9 8 7 6 q q q q q q q q q q q q q 3 -4 > -- + q 5 q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 938 |
|