© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
9.39
939
9.41
941
    9.40
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 940   

Visit 940's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 940's page at Knotilus!

Acknowledgement

9.40
KnotPlot

PD Presentation: X1627 X7,12,8,13 X5,15,6,14 X11,3,12,2 X15,10,16,11 X3,16,4,17 X9,4,10,5 X17,9,18,8 X13,18,14,1

Gauss Code: {-1, 4, -6, 7, -3, 1, -2, 8, -7, 5, -4, 2, -9, 3, -5, 6, -8, 9}

DT (Dowker-Thistlethwaite) Code: 6 16 14 12 4 2 18 10 8

Minimum Braid Representative:


Length is 9, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 3 3 / 4 2

Alexander Polynomial: t-3 - 7t-2 + 18t-1 - 23 + 18t - 7t2 + t3

Conway Polynomial: 1 - z2 - z4 + z6

Other knots with the same Alexander/Conway Polynomial: {1059, K11n66, ...}

Determinant and Signature: {75, -2}

Jones Polynomial: q-7 - 4q-6 + 8q-5 - 11q-4 + 13q-3 - 13q-2 + 11q-1 - 8 + 5q - q2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-22 - q-20 - 2q-18 + 3q-16 - q-14 + 2q-12 + q-10 - 3q-8 + q-6 - 4q-4 + 3q-2 + 1 + 3q4 - q6

HOMFLY-PT Polynomial: 2 - z4 - 2a2 + 2a2z4 + a2z6 + a4 - 2a4z2 - 2a4z4 + a6z2

Kauffman Polynomial: a-1z5 + 2 - 7z4 + 5z6 + 6az3 - 15az5 + 8az7 + 2a2 + 3a2z2 - 17a2z4 + 4a2z6 + 4a2z8 - a3z + 14a3z3 - 32a3z5 + 17a3z7 + a4 + 7a4z2 - 20a4z4 + 7a4z6 + 4a4z8 - a5z + 6a5z3 - 12a5z5 + 9a5z7 + 4a6z2 - 9a6z4 + 8a6z6 - 2a7z3 + 4a7z5 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 940. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5         1
j = 3        4 
j = 1       41 
j = -1      74  
j = -3     75   
j = -5    66    
j = -7   57     
j = -9  36      
j = -11 15       
j = -13 3        
j = -151         

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-20 - 4q-19 + 4q-18 + 9q-17 - 29q-16 + 17q-15 + 45q-14 - 84q-13 + 17q-12 + 107q-11 - 132q-10 - 5q-9 + 157q-8 - 140q-7 - 34q-6 + 166q-5 - 109q-4 - 55q-3 + 133q-2 - 56q-1 - 55 + 72q - 11q2 - 31q3 + 19q4 + 3q5 - 5q6 + q7
3 q-39 - 4q-38 + 4q-37 + 5q-36 - 9q-35 - 15q-34 + 25q-33 + 46q-32 - 63q-31 - 104q-30 + 98q-29 + 219q-28 - 115q-27 - 390q-26 + 96q-25 + 584q-24 - 12q-23 - 781q-22 - 124q-21 + 942q-20 + 293q-19 - 1048q-18 - 461q-17 + 1083q-16 + 620q-15 - 1066q-14 - 743q-13 + 994q-12 + 834q-11 - 880q-10 - 891q-9 + 728q-8 + 910q-7 - 544q-6 - 886q-5 + 344q-4 + 815q-3 - 158q-2 - 680q-1 - 11 + 525q + 107q2 - 342q3 - 151q4 + 194q5 + 126q6 - 73q7 - 94q8 + 25q9 + 40q10 + q11 - 14q12 - 3q13 + 5q14 - q15
4 q-64 - 4q-63 + 4q-62 + 5q-61 - 13q-60 + 5q-59 - 7q-58 + 36q-57 + 17q-56 - 108q-55 - 21q-54 + 22q-53 + 259q-52 + 155q-51 - 473q-50 - 412q-49 - 90q-48 + 1029q-47 + 1049q-46 - 889q-45 - 1701q-44 - 1284q-43 + 1991q-42 + 3403q-41 - 139q-40 - 3362q-39 - 4297q-38 + 1712q-37 + 6394q-36 + 2497q-35 - 3786q-34 - 8024q-33 - 421q-32 + 8187q-31 + 5814q-30 - 2414q-29 - 10564q-28 - 3234q-27 + 8099q-26 + 8166q-25 - 219q-24 - 11264q-23 - 5423q-22 + 6778q-21 + 9105q-20 + 1879q-19 - 10527q-18 - 6752q-17 + 4753q-16 + 8945q-15 + 3786q-14 - 8642q-13 - 7392q-12 + 2089q-11 + 7709q-10 + 5407q-9 - 5605q-8 - 6995q-7 - 819q-6 + 5176q-5 + 5964q-4 - 2006q-3 - 5063q-2 - 2721q-1 + 1940 + 4687q + 613q2 - 2214q3 - 2607q4 - 369q5 + 2280q6 + 1186q7 - 159q8 - 1224q9 - 830q10 + 505q11 + 537q12 + 329q13 - 217q14 - 354q15 - 8q16 + 63q17 + 123q18 + 12q19 - 54q20 - 10q21 - 6q22 + 14q23 + 3q24 - 5q25 + q26
5 q-95 - 4q-94 + 4q-93 + 5q-92 - 13q-91 + q-90 + 13q-89 + 4q-88 + 7q-87 - 18q-86 - 75q-85 - 21q-84 + 134q-83 + 196q-82 + 65q-81 - 290q-80 - 588q-79 - 346q-78 + 578q-77 + 1491q-76 + 1131q-75 - 787q-74 - 2986q-73 - 3096q-72 + 254q-71 + 5164q-70 + 6816q-69 + 1841q-68 - 7184q-67 - 12469q-66 - 6869q-65 + 7818q-64 + 19647q-63 + 15448q-62 - 5474q-61 - 26773q-60 - 27371q-59 - 1343q-58 + 31974q-57 + 41431q-56 + 12728q-55 - 33418q-54 - 55278q-53 - 27849q-52 + 30045q-51 + 66904q-50 + 44655q-49 - 22256q-48 - 74559q-47 - 60878q-46 + 11310q-45 + 77742q-44 + 74637q-43 + 945q-42 - 76887q-41 - 84934q-40 - 12823q-39 + 73166q-38 + 91462q-37 + 23316q-36 - 67633q-35 - 94929q-34 - 32026q-33 + 61317q-32 + 95958q-31 + 39130q-30 - 54407q-29 - 95300q-28 - 45264q-27 + 46955q-26 + 93288q-25 + 50814q-24 - 38508q-23 - 89768q-22 - 56107q-21 + 28638q-20 + 84414q-19 + 60870q-18 - 17251q-17 - 76575q-16 - 64378q-15 + 4624q-14 + 65809q-13 + 65649q-12 + 8290q-11 - 52284q-10 - 63518q-9 - 19905q-8 + 36598q-7 + 57365q-6 + 28725q-5 - 20537q-4 - 47451q-3 - 32966q-2 + 5850q-1 + 34873 + 32487q + 5201q2 - 21711q3 - 27556q4 - 11699q5 + 10114q6 + 20201q7 + 13297q8 - 1714q9 - 12207q10 - 11610q11 - 2816q12 + 5796q13 + 7952q14 + 4095q15 - 1434q16 - 4496q17 - 3473q18 - 388q19 + 1848q20 + 2087q21 + 913q22 - 470q23 - 1030q24 - 625q25 - 15q26 + 339q27 + 305q28 + 108q29 - 82q30 - 128q31 - 41q32 + 17q33 + 24q34 + 15q35 + 6q36 - 14q37 - 3q38 + 5q39 - q40
6 q-132 - 4q-131 + 4q-130 + 5q-129 - 13q-128 + q-127 + 9q-126 + 24q-125 - 25q-124 - 28q-123 + 15q-122 - 65q-121 + 41q-120 + 147q-119 + 178q-118 - 105q-117 - 379q-116 - 310q-115 - 384q-114 + 386q-113 + 1312q-112 + 1583q-111 + 123q-110 - 2142q-109 - 3366q-108 - 3713q-107 + 262q-106 + 6256q-105 + 10279q-104 + 6741q-103 - 3802q-102 - 14987q-101 - 22497q-100 - 12780q-99 + 11186q-98 + 36943q-97 + 42301q-96 + 17754q-95 - 26641q-94 - 72673q-93 - 75149q-92 - 22897q-91 + 64452q-90 + 126502q-89 + 114861q-88 + 20859q-87 - 122835q-86 - 206333q-85 - 163059q-84 + 11002q-83 + 208105q-82 + 300160q-81 + 203709q-80 - 69254q-79 - 330890q-78 - 406467q-77 - 200735q-76 + 165921q-75 + 472200q-74 + 496034q-73 + 157242q-72 - 317127q-71 - 626795q-70 - 518543q-69 - 53388q-68 + 496689q-67 + 752315q-66 + 479294q-65 - 130939q-64 - 694526q-63 - 787792q-62 - 353776q-61 + 358388q-60 + 855244q-59 + 744150q-58 + 123130q-57 - 610257q-56 - 909875q-55 - 595293q-54 + 160417q-53 + 818376q-52 + 875471q-51 + 326403q-50 - 468676q-49 - 908816q-48 - 725155q-47 - 3220q-46 + 724933q-45 + 904821q-44 + 448490q-43 - 340050q-42 - 855997q-41 - 780219q-40 - 120688q-39 + 625002q-38 + 892351q-37 + 529518q-36 - 222197q-35 - 785117q-34 - 810609q-33 - 233228q-32 + 505896q-31 + 857823q-30 + 610250q-29 - 74077q-28 - 674236q-27 - 822791q-26 - 371957q-25 + 326559q-24 + 768671q-23 + 682241q-22 + 125390q-21 - 479914q-20 - 770134q-19 - 510911q-18 + 75505q-17 + 575644q-16 + 680589q-15 + 330483q-14 - 198691q-13 - 594619q-12 - 564400q-11 - 181245q-10 + 282605q-9 + 537846q-8 + 434931q-7 + 84205q-6 - 308568q-5 - 458656q-4 - 320564q-3 - 6881q-2 + 277833q-1 + 364754 + 235195q - 32602q2 - 233296q3 - 276577q4 - 155693q5 + 35402q6 + 178683q7 + 204585q8 + 100451q9 - 32561q10 - 128030q11 - 135402q12 - 69538q13 + 23123q14 + 88090q15 + 85559q16 + 43740q17 - 14516q18 - 51067q19 - 54410q20 - 26949q21 + 9228q22 + 27867q23 + 30283q24 + 15291q25 - 2539q26 - 15544q27 - 15758q28 - 7395q29 + 501q30 + 6891q31 + 7213q32 + 4314q33 - 557q34 - 2878q35 - 2711q36 - 1815q37 + 22q38 + 970q39 + 1244q40 + 449q41 - 34q42 - 236q43 - 367q44 - 158q45 - 3q46 + 147q47 + 46q48 + 12q49 + 13q50 - 29q51 - 15q52 - 6q53 + 14q54 + 3q55 - 5q56 + q57
7 q-175 - 4q-174 + 4q-173 + 5q-172 - 13q-171 + q-170 + 9q-169 + 20q-168 - 5q-167 - 60q-166 + 5q-165 + 25q-164 - 3q-163 + 64q-162 + 79q-161 + 84q-160 - 122q-159 - 454q-158 - 281q-157 + 52q-156 + 463q-155 + 1045q-154 + 998q-153 + 433q-152 - 1222q-151 - 3419q-150 - 3579q-149 - 1570q-148 + 2835q-147 + 8202q-146 + 10225q-145 + 7031q-144 - 3253q-143 - 17943q-142 - 26826q-141 - 23120q-140 - 1907q-139 + 31757q-138 + 58792q-137 + 62462q-136 + 27835q-135 - 40805q-134 - 110794q-133 - 142875q-132 - 99576q-131 + 22452q-130 + 172482q-129 + 276253q-128 + 252753q-127 + 70313q-126 - 208683q-125 - 458776q-124 - 519690q-123 - 297183q-122 + 152790q-121 + 644597q-120 + 903805q-119 + 718366q-118 + 90916q-117 - 744407q-116 - 1360872q-115 - 1356868q-114 - 611740q-113 + 632115q-112 + 1779506q-111 + 2170262q-110 + 1460192q-109 - 180061q-108 - 2006206q-107 - 3040392q-106 - 2604575q-105 - 686673q-104 + 1882299q-103 + 3786854q-102 + 3922146q-101 + 1957131q-100 - 1299571q-99 - 4225837q-98 - 5223160q-97 - 3513648q-96 + 249033q-95 + 4219104q-94 + 6297475q-93 + 5165363q-92 + 1175115q-91 - 3725086q-90 - 6984368q-89 - 6695555q-88 - 2793574q-87 + 2808350q-86 + 7207331q-85 + 7923098q-84 + 4400454q-83 - 1614595q-82 - 6991824q-81 - 8747457q-80 - 5814345q-79 + 325035q-78 + 6443244q-77 + 9157727q-76 + 6919798q-75 + 895583q-74 - 5704977q-73 - 9218072q-72 - 7682771q-71 - 1934342q-70 + 4916830q-69 + 9036407q-68 + 8135949q-67 + 2741764q-66 - 4181694q-65 - 8723609q-64 - 8354428q-63 - 3331008q-62 + 3552214q-61 + 8372101q-60 + 8428340q-59 + 3751721q-58 - 3034014q-57 - 8035187q-56 - 8436095q-55 - 4075215q-54 + 2592903q-53 + 7730287q-52 + 8435186q-51 + 4371827q-50 - 2175554q-49 - 7440451q-48 - 8450748q-47 - 4698297q-46 + 1717549q-45 + 7122092q-44 + 8479451q-43 + 5090863q-42 - 1160176q-41 - 6718006q-40 - 8486939q-39 - 5553743q-38 + 459355q-37 + 6161476q-36 + 8413636q-35 + 6060211q-34 + 402193q-33 - 5395536q-32 - 8182962q-31 - 6544746q-30 - 1402181q-29 + 4384567q-28 + 7711927q-27 + 6911668q-26 + 2474147q-25 - 3133803q-24 - 6936254q-23 - 7049080q-22 - 3503822q-21 + 1705045q-20 + 5831383q-19 + 6850240q-18 + 4347929q-17 - 216180q-16 - 4436603q-15 - 6252848q-14 - 4862053q-13 - 1165051q-12 + 2864862q-11 + 5261483q-10 + 4937335q-9 + 2263048q-8 - 1287412q-7 - 3970524q-6 - 4544974q-5 - 2932065q-4 - 94561q-3 + 2546754q-2 + 3748955q-1 + 3106578 + 1111249q - 1198124q2 - 2705364q3 - 2822242q4 - 1665147q5 + 112556q6 + 1615593q7 + 2213668q8 + 1764879q9 + 590454q10 - 673337q11 - 1465900q12 - 1516157q13 - 897258q14 + 7574q15 + 766515q16 + 1082336q17 + 880257q18 + 346214q19 - 238988q20 - 625966q21 - 676126q22 - 439265q23 - 66388q24 + 264128q25 + 414939q26 + 367971q27 + 182613q28 - 40511q29 - 195483q30 - 238141q31 - 175676q32 - 54766q33 + 55653q34 + 117895q35 + 118760q36 + 70522q37 + 8542q38 - 41189q39 - 61295q40 - 50025q41 - 23636q42 + 4388q43 + 22951q44 + 25994q45 + 18756q46 + 5972q47 - 5395q48 - 9986q49 - 9547q50 - 5407q51 - 522q52 + 2496q53 + 3770q54 + 2987q55 + 997q56 - 339q57 - 1076q58 - 1015q59 - 526q60 - 207q61 + 225q62 + 363q63 + 205q64 + 53q65 - 62q66 - 65q67 - 17q68 - 42q69 - 8q70 + 29q71 + 15q72 + 6q73 - 14q74 - 3q75 + 5q76 - q77


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[9, 40]]
Out[2]=   
PD[X[1, 6, 2, 7], X[7, 12, 8, 13], X[5, 15, 6, 14], X[11, 3, 12, 2], 
 
>   X[15, 10, 16, 11], X[3, 16, 4, 17], X[9, 4, 10, 5], X[17, 9, 18, 8], 
 
>   X[13, 18, 14, 1]]
In[3]:=
GaussCode[Knot[9, 40]]
Out[3]=   
GaussCode[-1, 4, -6, 7, -3, 1, -2, 8, -7, 5, -4, 2, -9, 3, -5, 6, -8, 9]
In[4]:=
DTCode[Knot[9, 40]]
Out[4]=   
DTCode[6, 16, 14, 12, 4, 2, 18, 10, 8]
In[5]:=
br = BR[Knot[9, 40]]
Out[5]=   
BR[4, {-1, 2, -1, -3, 2, -1, -3, 2, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 9}
In[7]:=
BraidIndex[Knot[9, 40]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[9, 40]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[9, 40]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 3, 3, 4, 2}
In[10]:=
alex = Alexander[Knot[9, 40]][t]
Out[10]=   
       -3   7    18             2    3
-23 + t   - -- + -- + 18 t - 7 t  + t
             2   t
            t
In[11]:=
Conway[Knot[9, 40]][z]
Out[11]=   
     2    4    6
1 - z  - z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[9, 40], Knot[10, 59], Knot[11, NonAlternating, 66]}
In[13]:=
{KnotDet[Knot[9, 40]], KnotSignature[Knot[9, 40]]}
Out[13]=   
{75, -2}
In[14]:=
Jones[Knot[9, 40]][q]
Out[14]=   
      -7   4    8    11   13   13   11          2
-8 + q   - -- + -- - -- + -- - -- + -- + 5 q - q
            6    5    4    3    2   q
           q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[9, 40]}
In[16]:=
A2Invariant[Knot[9, 40]][q]
Out[16]=   
     -22    -20    2     3     -14    2     -10   3     -6   4    3       4    6
1 + q    - q    - --- + --- - q    + --- + q    - -- + q   - -- + -- + 3 q  - q
                   18    16           12           8          4    2
                  q     q            q            q          q    q
In[17]:=
HOMFLYPT[Knot[9, 40]][a, z]
Out[17]=   
       2    4      4  2    6  2    4      2  4      4  4    2  6
2 - 2 a  + a  - 2 a  z  + a  z  - z  + 2 a  z  - 2 a  z  + a  z
In[18]:=
Kauffman[Knot[9, 40]][a, z]
Out[18]=   
       2    4    3      5        2  2      4  2      6  2        3       3  3
2 + 2 a  + a  - a  z - a  z + 3 a  z  + 7 a  z  + 4 a  z  + 6 a z  + 14 a  z  + 
 
                                                                        5
       5  3      7  3      4       2  4       4  4      6  4    8  4   z
>   6 a  z  - 2 a  z  - 7 z  - 17 a  z  - 20 a  z  - 9 a  z  + a  z  + -- - 
                                                                       a
 
          5       3  5       5  5      7  5      6      2  6      4  6
>   15 a z  - 32 a  z  - 12 a  z  + 4 a  z  + 5 z  + 4 a  z  + 7 a  z  + 
 
       6  6        7       3  7      5  7      2  8      4  8
>   8 a  z  + 8 a z  + 17 a  z  + 9 a  z  + 4 a  z  + 4 a  z
In[19]:=
{Vassiliev[2][Knot[9, 40]], Vassiliev[3][Knot[9, 40]]}
Out[19]=   
{-1, 1}
In[20]:=
Kh[Knot[9, 40]][q, t]
Out[20]=   
5    7     1        3        1        5        3       6       5       7
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      6      6      7     4 t              2      3  2    5  3
>   ----- + ---- + ---- + --- + 4 q t + q t  + 4 q  t  + q  t
     5  2    5      3      q
    q  t    q  t   q  t
In[21]:=
ColouredJones[Knot[9, 40], 2][q]
Out[21]=   
       -20    4     4     9    29    17    45    84    17    107   132   5
-55 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- - -- + 
              19    18    17    16    15    14    13    12    11    10    9
             q     q     q     q     q     q     q     q     q     q     q
 
    157   140   34   166   109   55   133   56              2       3       4
>   --- - --- - -- + --- - --- - -- + --- - -- + 72 q - 11 q  - 31 q  + 19 q  + 
     8     7     6    5     4     3    2    q
    q     q     q    q     q     q    q
 
       5      6    7
>   3 q  - 5 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 940
9.39
939
9.41
941