© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 933Visit 933's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 933's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X12,8,13,7 X8394 X2,9,3,10 X18,13,1,14 X14,5,15,6 X6,17,7,18 X16,12,17,11 X10,16,11,15 |
Gauss Code: | {1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 12 2 16 18 10 6 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 6t-2 - 14t-1 + 19 - 14t + 6t2 - t3 |
Conway Polynomial: | 1 + z2 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n55, ...} |
Determinant and Signature: | {61, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 6q-3 + 9q-2 - 10q-1 + 11 - 9q + 7q2 - 4q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 + q-12 - 2q-10 + 2q-8 + 3q-2 - 1 + 3q2 - 2q4 + q8 - 2q10 + q12 |
HOMFLY-PT Polynomial: | a-2z2 + a-2z4 - 3z2 - 3z4 - z6 + 2a2 + 4a2z2 + 2a2z4 - a4 - a4z2 |
Kauffman Polynomial: | a-4z4 - 3a-3z3 + 4a-3z5 + 3a-2z2 - 9a-2z4 + 7a-2z6 - a-1z3 - 5a-1z5 + 6a-1z7 + 9z2 - 20z4 + 9z6 + 2z8 + 5az3 - 16az5 + 10az7 - 2a2 + 10a2z2 - 16a2z4 + 5a2z6 + 2a2z8 + a3z + a3z3 - 6a3z5 + 4a3z7 - a4 + 4a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 933. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + q-13 + 10q-12 - 17q-11 - 4q-10 + 40q-9 - 37q-8 - 27q-7 + 83q-6 - 46q-5 - 60q-4 + 113q-3 - 39q-2 - 83q-1 + 115 - 22q - 83q2 + 86q3 - 3q4 - 59q5 + 43q6 + 6q7 - 25q8 + 11q9 + 3q10 - 4q11 + q12 |
3 | - q-30 + 3q-29 - q-28 - 5q-27 - 2q-26 + 17q-25 + 7q-24 - 36q-23 - 25q-22 + 61q-21 + 64q-20 - 83q-19 - 131q-18 + 97q-17 + 214q-16 - 82q-15 - 312q-14 + 38q-13 + 411q-12 + 23q-11 - 486q-10 - 111q-9 + 550q-8 + 193q-7 - 577q-6 - 282q-5 + 595q-4 + 342q-3 - 567q-2 - 407q-1 + 536 + 431q - 460q2 - 452q3 + 382q4 + 430q5 - 276q6 - 392q7 + 179q8 + 326q9 - 94q10 - 247q11 + 34q12 + 166q13 - q14 - 96q15 - 14q16 + 53q17 + 7q18 - 20q19 - 5q20 + 7q21 + 3q22 - 4q23 + q24 |
4 | q-50 - 3q-49 + q-48 + 5q-47 - 3q-46 + 2q-45 - 20q-44 + 5q-43 + 38q-42 + 4q-41 + 2q-40 - 111q-39 - 33q-38 + 137q-37 + 119q-36 + 97q-35 - 342q-34 - 298q-33 + 161q-32 + 423q-31 + 584q-30 - 513q-29 - 904q-28 - 268q-27 + 641q-26 + 1590q-25 - 172q-24 - 1506q-23 - 1290q-22 + 288q-21 + 2717q-20 + 806q-19 - 1596q-18 - 2498q-17 - 701q-16 + 3422q-15 + 2012q-14 - 1092q-13 - 3396q-12 - 1903q-11 + 3566q-10 + 2982q-9 - 316q-8 - 3814q-7 - 2904q-6 + 3288q-5 + 3546q-4 + 478q-3 - 3782q-2 - 3560q-1 + 2665 + 3666q + 1225q2 - 3254q3 - 3797q4 + 1682q5 + 3236q6 + 1822q7 - 2208q8 - 3454q9 + 557q10 + 2229q11 + 1963q12 - 948q13 - 2483q14 - 227q15 + 1012q16 + 1494q17 - 56q18 - 1285q19 - 384q20 + 180q21 + 752q22 + 202q23 - 438q24 - 189q25 - 73q26 + 237q27 + 113q28 - 99q29 - 34q30 - 47q31 + 46q32 + 27q33 - 19q34 - 9q36 + 7q37 + 3q38 - 4q39 + q40 |
5 | - q-75 + 3q-74 - q-73 - 5q-72 + 3q-71 + 3q-70 + q-69 + 8q-68 - 7q-67 - 33q-66 - 7q-65 + 33q-64 + 52q-63 + 56q-62 - 31q-61 - 161q-60 - 170q-59 + 19q-58 + 280q-57 + 411q-56 + 176q-55 - 406q-54 - 844q-53 - 621q-52 + 352q-51 + 1388q-50 + 1473q-49 + 121q-48 - 1861q-47 - 2742q-46 - 1262q-45 + 1950q-44 + 4243q-43 + 3155q-42 - 1207q-41 - 5601q-40 - 5803q-39 - 573q-38 + 6375q-37 + 8777q-36 + 3483q-35 - 6070q-34 - 11671q-33 - 7333q-32 + 4553q-31 + 13979q-30 + 11622q-29 - 1851q-28 - 15251q-27 - 15968q-26 - 1769q-25 + 15547q-24 + 19810q-23 + 5780q-22 - 14763q-21 - 22943q-20 - 9926q-19 + 13403q-18 + 25228q-17 + 13655q-16 - 11484q-15 - 26787q-14 - 16995q-13 + 9544q-12 + 27652q-11 + 19688q-10 - 7391q-9 - 28057q-8 - 22014q-7 + 5437q-6 + 27888q-5 + 23779q-4 - 3159q-3 - 27295q-2 - 25297q-1 + 943 + 25992q + 26187q2 + 1744q3 - 23971q4 - 26648q5 - 4385q6 + 21050q7 + 26127q8 + 7175q9 - 17328q10 - 24715q11 - 9472q12 + 12986q13 + 22129q14 + 11117q15 - 8472q16 - 18631q17 - 11655q18 + 4271q19 + 14476q20 + 11121q21 - 936q22 - 10233q23 - 9570q24 - 1275q25 + 6404q26 + 7426q27 + 2350q28 - 3440q29 - 5175q30 - 2440q31 + 1461q32 + 3150q33 + 2021q34 - 338q35 - 1752q36 - 1353q37 - 80q38 + 791q39 + 781q40 + 213q41 - 335q42 - 403q43 - 130q44 + 111q45 + 165q46 + 71q47 - 21q48 - 72q49 - 37q50 + 23q51 + 20q52 + q53 + q54 - 4q55 - 9q56 + 7q57 + 3q58 - 4q59 + q60 |
6 | q-105 - 3q-104 + q-103 + 5q-102 - 3q-101 - 3q-100 - 6q-99 + 11q-98 - 6q-97 + 2q-96 + 36q-95 - 12q-94 - 34q-93 - 63q-92 + 12q-91 + 7q-90 + 65q-89 + 215q-88 + 60q-87 - 127q-86 - 391q-85 - 266q-84 - 212q-83 + 220q-82 + 1000q-81 + 916q-80 + 333q-79 - 1015q-78 - 1606q-77 - 2121q-76 - 915q-75 + 2079q-74 + 3883q-73 + 4009q-72 + 764q-71 - 2882q-70 - 7524q-69 - 7641q-68 - 1467q-67 + 6416q-66 + 12832q-65 + 11205q-64 + 3842q-63 - 11473q-62 - 21421q-61 - 17972q-60 - 2915q-59 + 18440q-58 + 30486q-57 + 28461q-56 + 1254q-55 - 29796q-54 - 45436q-53 - 34698q-52 + 2172q-51 + 41954q-50 + 65843q-49 + 40900q-48 - 11723q-47 - 63304q-46 - 80241q-45 - 44665q-44 + 23687q-43 + 92289q-42 + 95210q-41 + 38832q-40 - 50107q-39 - 114093q-38 - 106483q-37 - 26967q-36 + 87871q-35 + 138130q-34 + 103658q-33 - 6329q-32 - 118833q-31 - 157590q-30 - 90163q-29 + 55581q-28 + 154703q-27 + 158360q-26 + 48156q-25 - 99105q-24 - 185196q-23 - 143716q-22 + 13884q-21 + 149869q-20 + 192292q-19 + 94486q-18 - 70883q-17 - 193704q-16 - 179367q-15 - 22434q-14 + 136239q-13 + 209410q-12 + 127353q-11 - 44618q-10 - 192445q-9 - 201224q-8 - 51346q-7 + 120052q-6 + 216694q-5 + 151725q-4 - 19189q-3 - 184164q-2 - 214818q-1 - 78957 + 97330q + 214259q2 + 172178q3 + 12510q4 - 162501q5 - 218005q6 - 108722q7 + 60262q8 + 193635q9 + 184020q10 + 52288q11 - 119348q12 - 200071q13 - 132607q14 + 9390q15 + 146686q16 + 173726q17 + 88047q18 - 58309q19 - 152968q20 - 133685q21 - 38506q22 + 80365q23 + 133075q24 + 99561q25 - 817q26 - 86828q27 - 103623q28 - 60527q29 + 19753q30 + 74624q31 + 79230q32 + 29035q33 - 28710q34 - 56897q35 - 50779q36 - 12018q37 + 25450q38 + 43332q39 + 28074q40 + 1159q41 - 19157q42 - 26770q43 - 15319q44 + 1604q45 + 15272q46 + 14254q47 + 6490q48 - 2120q49 - 8728q50 - 7713q51 - 2969q52 + 3071q53 + 4151q54 + 3197q55 + 1143q56 - 1601q57 - 2193q58 - 1502q59 + 286q60 + 634q61 + 755q62 + 585q63 - 122q64 - 385q65 - 372q66 + 45q67 + 26q68 + 86q69 + 130q70 - 3q71 - 46q72 - 65q73 + 33q74 - 3q75 - 6q76 + 21q77 - 3q78 - 4q79 - 9q80 + 7q81 + 3q82 - 4q83 + q84 |
7 | - q-140 + 3q-139 - q-138 - 5q-137 + 3q-136 + 3q-135 + 6q-134 - 6q-133 - 13q-132 + 11q-131 - 5q-130 - 17q-129 + 13q-128 + 29q-127 + 55q-126 - 85q-124 - 43q-123 - 88q-122 - 88q-121 + 54q-120 + 188q-119 + 409q-118 + 288q-117 - 118q-116 - 376q-115 - 791q-114 - 917q-113 - 420q-112 + 395q-111 + 1790q-110 + 2427q-109 + 1678q-108 + 206q-107 - 2525q-106 - 4780q-105 - 5102q-104 - 3152q-103 + 2220q-102 + 7989q-101 + 10926q-100 + 9813q-99 + 1991q-98 - 9240q-97 - 18756q-96 - 22439q-95 - 13638q-94 + 4737q-93 + 25351q-92 + 39979q-91 + 35831q-90 + 12089q-89 - 23549q-88 - 58261q-87 - 69150q-86 - 46924q-85 + 4057q-84 + 67702q-83 + 107960q-82 + 101582q-81 + 42625q-80 - 54247q-79 - 140049q-78 - 171176q-77 - 121531q-76 + 4595q-75 + 148133q-74 + 241102q-73 + 228197q-72 + 90343q-71 - 112897q-70 - 290825q-69 - 348951q-68 - 229324q-67 + 22031q-66 + 297765q-65 + 460243q-64 + 399023q-63 + 127750q-62 - 243628q-61 - 537227q-60 - 577412q-59 - 326102q-58 + 122500q-57 + 558450q-56 + 736826q-55 + 551937q-54 + 60416q-53 - 512171q-52 - 854456q-51 - 779577q-50 - 286916q-49 + 400916q-48 + 914623q-47 + 982955q-46 + 533062q-45 - 236456q-44 - 913617q-43 - 1145254q-42 - 774451q-41 + 40157q-40 + 859423q-39 + 1256627q-38 + 990462q-37 + 167085q-36 - 765645q-35 - 1319360q-34 - 1170292q-33 - 364860q-32 + 650820q-31 + 1340844q-30 + 1308914q-29 + 541117q-28 - 530059q-27 - 1334094q-26 - 1410389q-25 - 688591q-24 + 416318q-23 + 1310013q-22 + 1481362q-21 + 808575q-20 - 315323q-19 - 1279794q-18 - 1531416q-17 - 904233q-16 + 228507q-15 + 1247728q-14 + 1568187q-13 + 984896q-12 - 151677q-11 - 1217127q-10 - 1598273q-9 - 1056484q-8 + 78632q-7 + 1182743q-6 + 1623094q-5 + 1128107q-4 + 335q-3 - 1140218q-2 - 1641850q-1 - 1201173 - 92091q + 1077731q2 + 1646488q3 + 1277395q4 + 204023q5 - 987518q6 - 1628437q7 - 1348375q8 - 335270q9 + 859516q10 + 1573547q11 + 1404365q12 + 481739q13 - 692247q14 - 1472214q15 - 1428674q16 - 628897q17 + 489369q18 + 1316820q19 + 1406486q20 + 759123q21 - 265534q22 - 1110482q23 - 1325913q24 - 850809q25 + 41939q26 + 865421q27 + 1185063q28 + 886693q29 + 155533q30 - 604378q31 - 992330q32 - 858018q33 - 304353q34 + 354914q35 + 768535q36 + 768599q37 + 388993q38 - 143541q39 - 539777q40 - 633728q41 - 408448q42 - 11592q43 + 333623q44 + 477633q45 + 373033q46 + 103593q47 - 169637q48 - 324942q49 - 302390q50 - 139663q51 + 56536q52 + 196159q53 + 219360q54 + 134706q55 + 7287q56 - 101281q57 - 141435q58 - 107299q59 - 34268q60 + 41025q61 + 81192q62 + 73834q63 + 36910q64 - 9504q65 - 40107q66 - 44109q67 - 29195q68 - 3684q69 + 16832q70 + 23424q71 + 18797q72 + 6189q73 - 5481q74 - 10542q75 - 10410q76 - 5092q77 + 933q78 + 4209q79 + 5199q80 + 2973q81 + 160q82 - 1371q83 - 2136q84 - 1462q85 - 399q86 + 297q87 + 935q88 + 684q89 + 121q90 - 86q91 - 291q92 - 180q93 - 86q94 - 62q95 + 132q96 + 111q97 + 4q98 - 18q99 - 39q100 + 5q101 + 7q102 - 29q103 + 14q104 + 17q105 - 3q106 - 4q107 - 9q108 + 7q109 + 3q110 - 4q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 33]] |
Out[2]= | PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[18, 13, 1, 14], X[14, 5, 15, 6], X[6, 17, 7, 18], X[16, 12, 17, 11], > X[10, 16, 11, 15]] |
In[3]:= | GaussCode[Knot[9, 33]] |
Out[3]= | GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5] |
In[4]:= | DTCode[Knot[9, 33]] |
Out[4]= | DTCode[4, 8, 14, 12, 2, 16, 18, 10, 6] |
In[5]:= | br = BR[Knot[9, 33]] |
Out[5]= | BR[4, {-1, 2, -1, 2, 2, -1, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 33]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 33]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 33]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 3, 3, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 33]][t] |
Out[10]= | -3 6 14 2 3 19 - t + -- - -- - 14 t + 6 t - t 2 t t |
In[11]:= | Conway[Knot[9, 33]][z] |
Out[11]= | 2 6 1 + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 33], Knot[11, NonAlternating, 55]} |
In[13]:= | {KnotDet[Knot[9, 33]], KnotSignature[Knot[9, 33]]} |
Out[13]= | {61, 0} |
In[14]:= | Jones[Knot[9, 33]][q] |
Out[14]= | -5 3 6 9 10 2 3 4 11 - q + -- - -- + -- - -- - 9 q + 7 q - 4 q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 33]} |
In[16]:= | A2Invariant[Knot[9, 33]][q] |
Out[16]= | -16 -12 2 2 3 2 4 8 10 12 -1 - q + q - --- + -- + -- + 3 q - 2 q + q - 2 q + q 10 8 2 q q q |
In[17]:= | HOMFLYPT[Knot[9, 33]][a, z] |
Out[17]= | 2 4 2 4 2 z 2 2 4 2 4 z 2 4 6 2 a - a - 3 z + -- + 4 a z - a z - 3 z + -- + 2 a z - z 2 2 a a |
In[18]:= | Kauffman[Knot[9, 33]][a, z] |
Out[18]= | 2 3 3 2 4 3 5 2 3 z 2 2 4 2 3 z z -2 a - a + a z + a z + 9 z + ---- + 10 a z + 4 a z - ---- - -- + 2 3 a a a 4 4 5 3 3 3 5 3 4 z 9 z 2 4 4 4 4 z > 5 a z + a z - 2 a z - 20 z + -- - ---- - 16 a z - 6 a z + ---- - 4 2 3 a a a 5 6 7 5 z 5 3 5 5 5 6 7 z 2 6 4 6 6 z > ---- - 16 a z - 6 a z + a z + 9 z + ---- + 5 a z + 3 a z + ---- + a 2 a a 7 3 7 8 2 8 > 10 a z + 4 a z + 2 z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[9, 33]], Vassiliev[3][Knot[9, 33]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[9, 33]][q, t] |
Out[20]= | 6 1 2 1 4 2 5 4 5 5 - + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 9 4 > 4 q t + 5 q t + 3 q t + 4 q t + q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[9, 33], 2][q] |
Out[21]= | -15 3 -13 10 17 4 40 37 27 83 46 60 113 115 + q - --- + q + --- - --- - --- + -- - -- - -- + -- - -- - -- + --- - 14 12 11 10 9 8 7 6 5 4 3 q q q q q q q q q q q 39 83 2 3 4 5 6 7 8 > -- - -- - 22 q - 83 q + 86 q - 3 q - 59 q + 43 q + 6 q - 25 q + 2 q q 9 10 11 12 > 11 q + 3 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 933 |
|