© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
9.33
933
9.35
935
    9.34
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 934   

Visit 934's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 934's page at Knotilus!

Acknowledgement

9.34
KnotPlot

PD Presentation: X6271 X16,8,17,7 X8394 X2,15,3,16 X14,9,15,10 X10,6,11,5 X4,14,5,13 X18,11,1,12 X12,17,13,18

Gauss Code: {1, -4, 3, -7, 6, -1, 2, -3, 5, -6, 8, -9, 7, -5, 4, -2, 9, -8}

DT (Dowker-Thistlethwaite) Code: 6 8 10 16 14 18 4 2 12

Minimum Braid Representative:


Length is 9, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 1 3 3 / 4--6 1

Alexander Polynomial: - t-3 + 6t-2 - 16t-1 + 23 - 16t + 6t2 - t3

Conway Polynomial: 1 - z2 - z6

Other knots with the same Alexander/Conway Polynomial: {K11n32, K11n119, ...}

Determinant and Signature: {69, 0}

Jones Polynomial: - q-5 + 4q-4 - 7q-3 + 10q-2 - 12q-1 + 12 - 10q + 8q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 2q-10 + 2q-8 - q-6 - q-4 + 2q-2 - 2 + 3q2 - 2q4 + q6 + 2q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2 + a-2z2 + a-2z4 - 1 - 4z2 - 3z4 - z6 + a2 + 3a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: a-4z4 - 2a-3z3 + 4a-3z5 - a-2 + 4a-2z2 - 10a-2z4 + 8a-2z6 - a-1z + 4a-1z3 - 10a-1z5 + 8a-1z7 - 1 + 11z2 - 23z4 + 9z6 + 3z8 - az + 12az3 - 26az5 + 14az7 - a2 + 10a2z2 - 19a2z4 + 5a2z6 + 3a2z8 + 5a3z3 - 11a3z5 + 6a3z7 + 3a4z2 - 7a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 934. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9         1
j = 7        3 
j = 5       51 
j = 3      53  
j = 1     75   
j = -1    66    
j = -3   46     
j = -5  36      
j = -7 14       
j = -9 3        
j = -111         

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 4q-14 + 2q-13 + 14q-12 - 24q-11 - 6q-10 + 55q-9 - 48q-8 - 39q-7 + 109q-6 - 54q-5 - 83q-4 + 143q-3 - 41q-2 - 112q-1 + 140 - 17q - 109q2 + 101q3 + 6q4 - 74q5 + 47q6 + 12q7 - 29q8 + 10q9 + 4q10 - 4q11 + q12
3 - q-30 + 4q-29 - 2q-28 - 9q-27 + 27q-25 + 12q-24 - 63q-23 - 40q-22 + 97q-21 + 113q-20 - 130q-19 - 218q-18 + 129q-17 + 354q-16 - 87q-15 - 492q-14 - 7q-13 + 623q-12 + 126q-11 - 714q-10 - 269q-9 + 771q-8 + 410q-7 - 793q-6 - 532q-5 + 778q-4 + 632q-3 - 728q-2 - 707q-1 + 652 + 741q - 536q2 - 747q3 + 410q4 + 693q5 - 258q6 - 611q7 + 132q8 + 482q9 - 25q10 - 350q11 - 26q12 + 214q13 + 49q14 - 116q15 - 42q16 + 56q17 + 20q18 - 19q19 - 9q20 + 6q21 + 4q22 - 4q23 + q24
4 q-50 - 4q-49 + 2q-48 + 9q-47 - 5q-46 - 3q-45 - 33q-44 + 12q-43 + 74q-42 + 17q-41 - 15q-40 - 211q-39 - 76q-38 + 256q-37 + 277q-36 + 191q-35 - 622q-34 - 641q-33 + 189q-32 + 844q-31 + 1195q-30 - 721q-29 - 1744q-28 - 861q-27 + 993q-26 + 3002q-25 + 330q-24 - 2485q-23 - 2852q-22 - 136q-21 + 4597q-20 + 2412q-19 - 2001q-18 - 4761q-17 - 2308q-16 + 5119q-15 + 4516q-14 - 524q-13 - 5807q-12 - 4533q-11 + 4680q-10 + 5920q-9 + 1158q-8 - 5993q-7 - 6164q-6 + 3731q-5 + 6547q-4 + 2637q-3 - 5517q-2 - 7085q-1 + 2405 + 6391q + 3852q2 - 4285q3 - 7160q4 + 689q5 + 5225q6 + 4550q7 - 2301q8 - 6066q9 - 926q10 + 3112q11 + 4168q12 - 277q13 - 3886q14 - 1582q15 + 949q16 + 2693q17 + 743q18 - 1643q19 - 1115q20 - 183q21 + 1098q22 + 633q23 - 384q24 - 385q25 - 272q26 + 257q27 + 221q28 - 48q29 - 49q30 - 90q31 + 37q32 + 39q33 - 11q34 + q35 - 13q36 + 6q37 + 4q38 - 4q39 + q40
5 - q-75 + 4q-74 - 2q-73 - 9q-72 + 5q-71 + 8q-70 + 9q-69 + 9q-68 - 23q-67 - 67q-66 - 22q-65 + 79q-64 + 147q-63 + 126q-62 - 86q-61 - 373q-60 - 438q-59 - 7q-58 + 678q-57 + 1028q-56 + 531q-55 - 810q-54 - 2043q-53 - 1768q-52 + 451q-51 + 3097q-50 + 3834q-49 + 1183q-48 - 3662q-47 - 6681q-46 - 4309q-45 + 2841q-44 + 9415q-43 + 9102q-42 + 191q-41 - 11161q-40 - 14834q-39 - 5684q-38 + 10678q-37 + 20490q-36 + 13309q-35 - 7381q-34 - 24730q-33 - 22142q-32 + 1204q-31 + 26727q-30 + 30858q-29 + 7098q-28 - 25897q-27 - 38434q-26 - 16564q-25 + 22696q-24 + 44084q-23 + 25954q-22 - 17694q-21 - 47595q-20 - 34528q-19 + 11825q-18 + 49272q-17 + 41709q-16 - 5832q-15 - 49515q-14 - 47403q-13 + 119q-12 + 48808q-11 + 51828q-10 + 5096q-9 - 47442q-8 - 55165q-7 - 9932q-6 + 45366q-5 + 57635q-4 + 14722q-3 - 42519q-2 - 59226q-1 - 19500 + 38437q + 59579q2 + 24528q3 - 32910q4 - 58452q5 - 29202q6 + 25783q7 + 55091q8 + 33241q9 - 17413q10 - 49461q11 - 35518q12 + 8486q13 + 41435q14 + 35624q15 - 198q16 - 31910q17 - 32886q18 - 6404q19 + 21796q20 + 27973q21 + 10324q22 - 12686q23 - 21368q24 - 11494q25 + 5444q26 + 14640q27 + 10381q28 - 897q29 - 8689q30 - 7900q31 - 1364q32 + 4347q33 + 5191q34 + 1892q35 - 1772q36 - 2883q37 - 1505q38 + 462q39 + 1364q40 + 957q41 - 30q42 - 571q43 - 449q44 - 60q45 + 190q46 + 181q47 + 59q48 - 72q49 - 74q50 - q51 + 20q52 + 8q53 + 9q54 - 3q55 - 13q56 + 6q57 + 4q58 - 4q59 + q60
6 q-105 - 4q-104 + 2q-103 + 9q-102 - 5q-101 - 8q-100 - 14q-99 + 15q-98 + 2q-97 + 16q-96 + 72q-95 - 26q-94 - 92q-93 - 163q-92 - 27q-91 + 59q-90 + 242q-89 + 552q-88 + 212q-87 - 320q-86 - 1063q-85 - 1006q-84 - 680q-83 + 623q-82 + 2695q-81 + 2913q-80 + 1492q-79 - 2203q-78 - 4888q-77 - 6640q-76 - 3742q-75 + 4175q-74 + 10756q-73 + 13020q-72 + 5890q-71 - 5535q-70 - 20110q-69 - 24328q-68 - 11458q-67 + 11198q-66 + 33982q-65 + 38216q-64 + 22114q-63 - 18946q-62 - 55241q-61 - 61282q-60 - 29789q-59 + 30049q-58 + 80016q-57 + 94087q-56 + 38852q-55 - 48992q-54 - 118831q-53 - 123612q-52 - 45861q-51 + 71966q-50 + 170542q-49 + 156660q-48 + 42172q-47 - 115811q-46 - 217687q-45 - 186479q-44 - 29574q-43 + 178557q-42 + 271427q-41 + 199049q-40 - 16250q-39 - 239573q-38 - 321541q-37 - 193995q-36 + 92020q-35 + 315023q-34 + 348024q-33 + 140530q-32 - 173593q-31 - 389585q-30 - 348258q-29 - 44606q-28 + 280278q-27 + 435588q-26 + 286036q-25 - 65372q-24 - 389077q-23 - 447370q-22 - 170599q-21 + 209578q-20 + 463670q-19 + 384479q-18 + 34442q-17 - 356319q-16 - 495577q-15 - 259898q-14 + 141818q-13 + 462028q-12 + 442844q-11 + 109774q-10 - 318813q-9 - 517342q-8 - 323134q-7 + 83170q-6 + 448797q-5 + 482484q-4 + 175604q-3 - 273997q-2 - 523707q-1 - 380135 + 14014q + 414062q2 + 508808q3 + 250860q4 - 197997q5 - 498059q6 - 430541q7 - 83203q8 + 330085q9 + 497760q10 + 328123q11 - 75882q12 - 408894q13 - 441171q14 - 191750q15 + 186123q16 + 413536q17 + 363413q18 + 63988q19 - 251033q20 - 371665q21 - 255646q22 + 23502q23 + 257079q24 + 312752q25 + 154170q26 - 78266q27 - 229647q28 - 229420q29 - 82084q30 + 92051q31 + 191466q32 + 151409q33 + 30912q34 - 85215q35 - 136646q36 - 94578q37 - 6610q38 + 72590q39 + 87565q40 + 51710q41 - 4566q42 - 48973q43 - 53389q44 - 27268q45 + 10529q46 + 29057q47 + 28184q48 + 12518q49 - 7389q50 - 16750q51 - 14376q52 - 3277q53 + 4218q54 + 7879q55 + 6329q56 + 1083q57 - 2705q58 - 3767q59 - 1676q60 - 260q61 + 1095q62 + 1477q63 + 616q64 - 201q65 - 596q66 - 226q67 - 172q68 + 60q69 + 214q70 + 93q71 - 16q72 - 87q73 + 15q74 - 18q75 - 11q76 + 28q77 + 5q78 - 3q79 - 13q80 + 6q81 + 4q82 - 4q83 + q84
7 - q-140 + 4q-139 - 2q-138 - 9q-137 + 5q-136 + 8q-135 + 14q-134 - 10q-133 - 26q-132 + 5q-131 - 21q-130 - 24q-129 + 39q-128 + 92q-127 + 141q-126 + 20q-125 - 197q-124 - 232q-123 - 344q-122 - 253q-121 + 178q-120 + 675q-119 + 1289q-118 + 1072q-117 - 33q-116 - 1311q-115 - 2854q-114 - 3381q-113 - 1979q-112 + 985q-111 + 5620q-110 + 8655q-109 + 7576q-108 + 2517q-107 - 7040q-106 - 16215q-105 - 19946q-104 - 15056q-103 + 1684q-102 + 23395q-101 + 39464q-100 + 41277q-99 + 19848q-98 - 18707q-97 - 59274q-96 - 83861q-95 - 69180q-94 - 14057q-93 + 63605q-92 + 132781q-91 + 149147q-90 + 93644q-89 - 23369q-88 - 162516q-87 - 249493q-86 - 229710q-85 - 89221q-84 + 133949q-83 + 333928q-82 + 407982q-81 + 292569q-80 - 1773q-79 - 349646q-78 - 587886q-77 - 574945q-76 - 260227q-75 + 237065q-74 + 700205q-73 + 889664q-72 + 648950q-71 + 46196q-70 - 672613q-69 - 1160225q-68 - 1116612q-67 - 504567q-66 + 447271q-65 + 1299853q-64 + 1583164q-63 + 1097392q-62 - 6866q-61 - 1238823q-60 - 1954553q-59 - 1746377q-58 - 617661q-57 + 946552q-56 + 2150543q-55 + 2354958q-54 + 1355500q-53 - 438709q-52 - 2127516q-51 - 2838187q-50 - 2115194q-49 - 224497q-48 + 1886766q-47 + 3139347q-46 + 2808633q-45 + 962632q-44 - 1469069q-43 - 3244729q-42 - 3373205q-41 - 1691930q-40 + 942327q-39 + 3175544q-38 + 3778094q-37 + 2346613q-36 - 377124q-35 - 2978499q-34 - 4027779q-33 - 2887912q-32 - 164342q-31 + 2710187q-30 + 4148097q-29 + 3304202q-28 + 641548q-27 - 2420560q-26 - 4177817q-25 - 3607912q-24 - 1036621q-23 + 2147420q-22 + 4156866q-21 + 3823412q-20 + 1351280q-19 - 1909743q-18 - 4116003q-17 - 3981713q-16 - 1604177q-15 + 1709872q-14 + 4076227q-13 + 4112104q-12 + 1820136q-11 - 1535296q-10 - 4042274q-9 - 4235883q-8 - 2029292q-7 + 1360966q-6 + 4006145q-5 + 4364984q-4 + 2257688q-3 - 1157376q-2 - 3945409q-1 - 4494135 - 2522244q + 890834q2 + 3825894q3 + 4604709q4 + 2826220q5 - 537899q6 - 3610169q7 - 4658362q8 - 3149968q9 + 87493q10 + 3261430q11 + 4609291q12 + 3454987q13 + 444233q14 - 2762212q15 - 4408420q16 - 3681754q17 - 1015128q18 + 2119469q19 + 4023424q20 + 3768099q21 + 1555703q22 - 1377286q23 - 3449927q24 - 3661296q25 - 1986923q26 + 609765q27 + 2725638q28 + 3341119q29 + 2235800q30 + 89307q31 - 1922465q32 - 2829249q33 - 2263880q34 - 633602q35 + 1139954q36 + 2192067q37 + 2073346q38 + 964613q39 - 470669q40 - 1520174q41 - 1718343q42 - 1073367q43 - 15765q44 + 910274q45 + 1278907q46 + 993820q47 + 298839q48 - 430400q49 - 843686q50 - 797484q51 - 400811q52 + 112560q53 + 480840q54 + 559280q55 + 375169q56 + 56051q57 - 223202q58 - 341928q59 - 286642q60 - 113375q61 + 71464q62 + 179387q63 + 185323q64 + 106234q65 + 217q66 - 77368q67 - 103193q68 - 75414q69 - 21814q70 + 25233q71 + 49176q72 + 43605q73 + 20489q74 - 3481q75 - 19779q76 - 21631q77 - 13194q78 - 2254q79 + 6836q80 + 9138q81 + 6470q82 + 2371q83 - 1711q84 - 3329q85 - 2844q86 - 1471q87 + 482q88 + 1208q89 + 917q90 + 534q91 - 66q92 - 260q93 - 318q94 - 291q95 + 48q96 + 158q97 + 75q98 + 28q99 - 31q100 + 2q101 - 2q102 - 49q103 + 9q104 + 24q105 + 5q106 - 3q107 - 13q108 + 6q109 + 4q110 - 4q111 + q112


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[9, 34]]
Out[2]=   
PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[8, 3, 9, 4], X[2, 15, 3, 16], 
 
>   X[14, 9, 15, 10], X[10, 6, 11, 5], X[4, 14, 5, 13], X[18, 11, 1, 12], 
 
>   X[12, 17, 13, 18]]
In[3]:=
GaussCode[Knot[9, 34]]
Out[3]=   
GaussCode[1, -4, 3, -7, 6, -1, 2, -3, 5, -6, 8, -9, 7, -5, 4, -2, 9, -8]
In[4]:=
DTCode[Knot[9, 34]]
Out[4]=   
DTCode[6, 8, 10, 16, 14, 18, 4, 2, 12]
In[5]:=
br = BR[Knot[9, 34]]
Out[5]=   
BR[4, {-1, 2, -1, 2, -3, 2, -1, 2, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 9}
In[7]:=
BraidIndex[Knot[9, 34]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[9, 34]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[9, 34]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 1, 3, 3, {4, 6}, 1}
In[10]:=
alex = Alexander[Knot[9, 34]][t]
Out[10]=   
      -3   6    16             2    3
23 - t   + -- - -- - 16 t + 6 t  - t
            2   t
           t
In[11]:=
Conway[Knot[9, 34]][z]
Out[11]=   
     2    6
1 - z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[9, 34], Knot[11, NonAlternating, 32], Knot[11, NonAlternating, 119]}
In[13]:=
{KnotDet[Knot[9, 34]], KnotSignature[Knot[9, 34]]}
Out[13]=   
{69, 0}
In[14]:=
Jones[Knot[9, 34]][q]
Out[14]=   
      -5   4    7    10   12             2      3    4
12 - q   + -- - -- + -- - -- - 10 q + 8 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[9, 34]}
In[16]:=
A2Invariant[Knot[9, 34]][q]
Out[16]=   
      -16    -14    2     2    2     -6    -4   2       2      4    6      8
-2 - q    + q    + --- - --- + -- - q   - q   + -- + 3 q  - 2 q  + q  + 2 q  - 
                    12    10    8                2
                   q     q     q                q
 
       10    12
>   2 q   + q
In[17]:=
HOMFLYPT[Knot[9, 34]][a, z]
Out[17]=   
                        2                             4
      -2    2      2   z       2  2    4  2      4   z       2  4    6
-1 + a   + a  - 4 z  + -- + 3 a  z  - a  z  - 3 z  + -- + 2 a  z  - z
                        2                             2
                       a                             a
In[18]:=
Kauffman[Knot[9, 34]][a, z]
Out[18]=   
                                     2                           3      3
      -2    2   z             2   4 z        2  2      4  2   2 z    4 z
-1 - a   - a  - - - a z + 11 z  + ---- + 10 a  z  + 3 a  z  - ---- + ---- + 
                a                   2                           3     a
                                   a                           a
 
                                         4       4
          3      3  3    5  3       4   z    10 z        2  4      4  4
>   12 a z  + 5 a  z  - a  z  - 23 z  + -- - ----- - 19 a  z  - 7 a  z  + 
                                         4     2
                                        a     a
 
       5       5                                          6
    4 z    10 z          5       3  5    5  5      6   8 z       2  6
>   ---- - ----- - 26 a z  - 11 a  z  + a  z  + 9 z  + ---- + 5 a  z  + 
      3      a                                           2
     a                                                  a
 
                 7
       4  6   8 z          7      3  7      8      2  8
>   4 a  z  + ---- + 14 a z  + 6 a  z  + 3 z  + 3 a  z
               a
In[19]:=
{Vassiliev[2][Knot[9, 34]], Vassiliev[3][Knot[9, 34]]}
Out[19]=   
{-1, 0}
In[20]:=
Kh[Knot[9, 34]][q, t]
Out[20]=   
6           1        3       1       4       3       6       4      6      6
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2    5  3      7  3    9  4
>   5 q t + 5 q  t + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + q  t
In[21]:=
ColouredJones[Knot[9, 34], 2][q]
Out[21]=   
       -15    4     2    14    24     6    55   48   39   109   54   83   143
140 + q    - --- + --- + --- - --- - --- + -- - -- - -- + --- - -- - -- + --- - 
              14    13    12    11    10    9    8    7    6     5    4    3
             q     q     q     q     q     q    q    q    q     q    q    q
 
    41   112               2        3      4       5       6       7       8
>   -- - --- - 17 q - 109 q  + 101 q  + 6 q  - 74 q  + 47 q  + 12 q  - 29 q  + 
     2    q
    q
 
        9      10      11    12
>   10 q  + 4 q   - 4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 934
9.33
933
9.35
935