© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 931Visit 931's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 931's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X17,7,18,6 X7,14,8,15 X13,16,14,17 X15,8,16,9 X9,2,10,3 |
Gauss Code: | {-1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 2 18 16 8 6 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 5t-2 + 13t-1 - 17 + 13t - 5t2 + t3 |
Conway Polynomial: | 1 + 2z2 + z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n11, K11n22, K11n112, K11n127, ...} |
Determinant and Signature: | {55, -2} |
Jones Polynomial: | q-7 - 4q-6 + 6q-5 - 8q-4 + 10q-3 - 9q-2 + 8q-1 - 5 + 3q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - q-20 - 2q-18 + q-16 - 2q-14 + q-12 + q-10 + 3q-6 - q-4 + 3q-2 - q2 + q4 - q6 |
HOMFLY-PT Polynomial: | - 1 - 2z2 - z4 + 4a2 + 7a2z2 + 4a2z4 + a2z6 - 2a4 - 4a4z2 - 2a4z4 + a6z2 |
Kauffman Polynomial: | a-1z - 2a-1z3 + a-1z5 - 1 + 5z2 - 7z4 + 3z6 + 3az - 3az3 - 3az5 + 3az7 - 4a2 + 15a2z2 - 21a2z4 + 8a2z6 + a2z8 + 5a3z - 5a3z3 - 7a3z5 + 7a3z7 - 2a4 + 13a4z2 - 23a4z4 + 11a4z6 + a4z8 + 3a5z - 8a5z3 + a5z5 + 4a5z7 + 3a6z2 - 8a6z4 + 6a6z6 - 4a7z3 + 4a7z5 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 931. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 4q-19 + 2q-18 + 12q-17 - 21q-16 + q-15 + 38q-14 - 46q-13 - 7q-12 + 71q-11 - 65q-10 - 21q-9 + 93q-8 - 66q-7 - 32q-6 + 91q-5 - 48q-4 - 35q-3 + 66q-2 - 24q-1 - 27 + 33q - 6q2 - 13q3 + 10q4 - 3q6 + q7 |
3 | q-39 - 4q-38 + 2q-37 + 8q-36 - q-35 - 20q-34 - 5q-33 + 46q-32 + 8q-31 - 71q-30 - 32q-29 + 116q-28 + 58q-27 - 155q-26 - 108q-25 + 204q-24 + 160q-23 - 238q-22 - 222q-21 + 262q-20 + 285q-19 - 277q-18 - 333q-17 + 265q-16 + 380q-15 - 256q-14 - 393q-13 + 213q-12 + 409q-11 - 179q-10 - 389q-9 + 123q-8 + 369q-7 - 80q-6 - 318q-5 + 26q-4 + 273q-3 + 4q-2 - 207q-1 - 34 + 153q + 41q2 - 98q3 - 42q4 + 58q5 + 33q6 - 29q7 - 23q8 + 13q9 + 13q10 - 5q11 - 5q12 + 3q14 - q15 |
4 | q-64 - 4q-63 + 2q-62 + 8q-61 - 5q-60 - 26q-58 + 13q-57 + 47q-56 - 11q-55 - 4q-54 - 117q-53 + 22q-52 + 168q-51 + 27q-50 - 11q-49 - 354q-48 - 27q-47 + 396q-46 + 208q-45 + 45q-44 - 786q-43 - 259q-42 + 665q-41 + 608q-40 + 279q-39 - 1327q-38 - 729q-37 + 811q-36 + 1135q-35 + 741q-34 - 1774q-33 - 1317q-32 + 731q-31 + 1574q-30 + 1308q-29 - 1966q-28 - 1803q-27 + 463q-26 + 1772q-25 + 1790q-24 - 1879q-23 - 2044q-22 + 114q-21 + 1699q-20 + 2067q-19 - 1550q-18 - 2012q-17 - 257q-16 + 1393q-15 + 2120q-14 - 1046q-13 - 1736q-12 - 581q-11 + 916q-10 + 1926q-9 - 479q-8 - 1258q-7 - 757q-6 + 381q-5 + 1496q-4 - 24q-3 - 694q-2 - 698q-1 - 31 + 932q + 179q2 - 230q3 - 455q4 - 197q5 + 434q6 + 156q7 + 5q8 - 197q9 - 163q10 + 141q11 + 65q12 + 48q13 - 52q14 - 74q15 + 32q16 + 12q17 + 23q18 - 6q19 - 20q20 + 5q21 + 5q23 - 3q25 + q26 |
5 | q-95 - 4q-94 + 2q-93 + 8q-92 - 5q-91 - 4q-90 - 6q-89 - 8q-88 + 14q-87 + 38q-86 + 3q-85 - 44q-84 - 58q-83 - 27q-82 + 72q-81 + 140q-80 + 82q-79 - 135q-78 - 292q-77 - 157q-76 + 191q-75 + 488q-74 + 401q-73 - 233q-72 - 874q-71 - 729q-70 + 232q-69 + 1256q-68 + 1357q-67 - 36q-66 - 1849q-65 - 2164q-64 - 337q-63 + 2319q-62 + 3297q-61 + 1065q-60 - 2802q-59 - 4572q-58 - 2081q-57 + 2988q-56 + 5982q-55 + 3432q-54 - 2962q-53 - 7300q-52 - 4978q-51 + 2583q-50 + 8454q-49 + 6608q-48 - 1930q-47 - 9332q-46 - 8162q-45 + 1094q-44 + 9834q-43 + 9526q-42 - 78q-41 - 10078q-40 - 10622q-39 - 850q-38 + 9913q-37 + 11379q-36 + 1898q-35 - 9620q-34 - 11871q-33 - 2685q-32 + 8966q-31 + 12014q-30 + 3587q-29 - 8242q-28 - 11966q-27 - 4226q-26 + 7224q-25 + 11585q-24 + 4979q-23 - 6142q-22 - 11023q-21 - 5471q-20 + 4798q-19 + 10161q-18 + 5986q-17 - 3457q-16 - 9091q-15 - 6158q-14 + 1973q-13 + 7754q-12 + 6241q-11 - 682q-10 - 6289q-9 - 5876q-8 - 527q-7 + 4704q-6 + 5366q-5 + 1357q-4 - 3230q-3 - 4480q-2 - 1899q-1 + 1879 + 3554q + 2036q2 - 850q3 - 2531q4 - 1908q5 + 125q6 + 1656q7 + 1555q8 + 274q9 - 933q10 - 1148q11 - 423q12 + 453q13 + 743q14 + 400q15 - 148q16 - 435q17 - 311q18 + 11q19 + 229q20 + 196q21 + 33q22 - 92q23 - 116q24 - 45q25 + 44q26 + 59q27 + 18q28 - 6q29 - 21q30 - 23q31 + 6q32 + 13q33 + 2q34 - 5q37 + 3q39 - q40 |
6 | q-132 - 4q-131 + 2q-130 + 8q-129 - 5q-128 - 4q-127 - 10q-126 + 12q-125 - 7q-124 + 5q-123 + 52q-122 - 27q-121 - 38q-120 - 62q-119 + 30q-118 + 9q-117 + 62q-116 + 209q-115 - 65q-114 - 188q-113 - 307q-112 + 7q-111 + 46q-110 + 344q-109 + 770q-108 + 4q-107 - 578q-106 - 1170q-105 - 461q-104 - 53q-103 + 1162q-102 + 2462q-101 + 860q-100 - 1094q-99 - 3313q-98 - 2500q-97 - 1271q-96 + 2500q-95 + 6368q-94 + 4208q-93 - 463q-92 - 6870q-91 - 7710q-90 - 5902q-89 + 2804q-88 + 12711q-87 + 12156q-86 + 4182q-85 - 9916q-84 - 16395q-83 - 16397q-82 - 1246q-81 + 19092q-80 + 24803q-79 + 15450q-78 - 8609q-77 - 25661q-76 - 32402q-75 - 12206q-74 + 21191q-73 + 38503q-72 + 32408q-71 - 383q-70 - 30788q-69 - 49484q-68 - 28624q-67 + 16453q-66 + 48063q-65 + 50088q-64 + 13089q-63 - 29244q-62 - 62142q-61 - 45404q-60 + 6528q-59 + 50837q-58 + 63153q-57 + 27105q-56 - 22494q-55 - 67781q-54 - 57815q-53 - 4580q-52 + 47919q-51 + 69463q-50 + 37884q-49 - 13791q-48 - 67262q-47 - 64351q-46 - 14105q-45 + 41739q-44 + 69948q-43 + 44639q-42 - 5048q-41 - 62441q-40 - 66031q-39 - 21818q-38 + 33477q-37 + 66103q-36 + 48411q-35 + 3859q-34 - 54014q-33 - 63964q-32 - 28580q-31 + 22824q-30 + 58226q-29 + 49748q-28 + 13471q-27 - 41627q-26 - 57914q-25 - 34155q-24 + 9710q-23 + 45798q-22 + 47556q-21 + 22695q-20 - 25659q-19 - 46928q-18 - 36402q-17 - 3836q-16 + 29361q-15 + 40118q-14 + 28404q-13 - 8919q-12 - 31464q-11 - 32809q-10 - 13740q-9 + 12152q-8 + 27611q-7 + 27561q-6 + 3854q-5 - 14998q-4 - 23412q-3 - 16582q-2 - 834q-1 + 13631 + 20363q + 9173q2 - 2596q3 - 12013q4 - 12771q5 - 6415q6 + 3157q7 + 10912q8 + 7804q9 + 2952q10 - 3466q11 - 6496q12 - 5813q13 - 1464q14 + 3835q15 + 3922q16 + 3153q17 + 288q18 - 1903q19 - 3035q20 - 1834q21 + 642q22 + 1094q23 + 1581q24 + 798q25 - 59q26 - 1017q27 - 914q28 - 75q29 + 50q30 + 471q31 + 380q32 + 216q33 - 223q34 - 283q35 - 53q36 - 84q37 + 80q38 + 97q39 + 109q40 - 36q41 - 62q42 - 3q43 - 35q44 + 6q45 + 12q46 + 32q47 - 6q48 - 13q49 + 5q50 - 7q51 + 5q54 - 3q56 + q57 |
7 | q-175 - 4q-174 + 2q-173 + 8q-172 - 5q-171 - 4q-170 - 10q-169 + 8q-168 + 13q-167 - 16q-166 + 19q-165 + 22q-164 - 21q-163 - 32q-162 - 58q-161 + 12q-160 + 84q-159 + 13q-158 + 91q-157 + 54q-156 - 111q-155 - 153q-154 - 291q-153 - 45q-152 + 306q-151 + 312q-150 + 498q-149 + 219q-148 - 417q-147 - 724q-146 - 1183q-145 - 598q-144 + 738q-143 + 1479q-142 + 2273q-141 + 1377q-140 - 821q-139 - 2533q-138 - 4364q-137 - 3319q-136 + 506q-135 + 4294q-134 + 7817q-133 + 6644q-132 + 769q-131 - 5882q-130 - 12795q-129 - 12926q-128 - 4537q-127 + 7342q-126 + 20015q-125 + 22388q-124 + 11484q-123 - 6640q-122 - 28010q-121 - 36511q-120 - 24388q-119 + 2513q-118 + 36778q-117 + 54726q-116 + 43408q-115 + 7899q-114 - 42871q-113 - 76524q-112 - 70626q-111 - 26370q-110 + 44780q-109 + 99484q-108 + 104380q-107 + 54577q-106 - 38596q-105 - 120792q-104 - 143625q-103 - 92456q-102 + 22975q-101 + 136842q-100 + 184498q-99 + 138565q-98 + 3495q-97 - 144791q-96 - 223562q-95 - 189620q-94 - 39569q-93 + 142628q-92 + 256697q-91 + 241727q-90 + 83046q-89 - 130280q-88 - 281264q-87 - 290581q-86 - 130107q-85 + 109056q-84 + 295683q-83 + 332631q-82 + 176913q-81 - 81393q-80 - 300125q-79 - 365865q-78 - 220045q-77 + 50789q-76 + 296150q-75 + 388976q-74 + 256729q-73 - 19511q-72 - 285424q-71 - 403208q-70 - 286451q-69 - 9332q-68 + 270954q-67 + 408982q-66 + 308177q-65 + 35629q-64 - 253431q-63 - 409006q-62 - 324132q-61 - 58083q-60 + 235404q-59 + 403707q-58 + 334089q-57 + 78338q-56 - 215553q-55 - 395109q-54 - 341020q-53 - 96510q-52 + 195129q-51 + 382831q-50 + 344198q-49 + 114478q-48 - 171729q-47 - 367246q-46 - 345612q-45 - 132536q-44 + 145965q-43 + 347125q-42 + 343582q-41 + 151346q-40 - 115679q-39 - 322041q-38 - 338536q-37 - 169976q-36 + 82021q-35 + 290651q-34 + 327952q-33 + 187731q-32 - 44536q-31 - 253245q-30 - 311536q-29 - 201908q-28 + 5971q-27 + 209431q-26 + 287116q-25 + 211005q-24 + 32323q-23 - 161687q-22 - 255401q-21 - 211910q-20 - 66028q-19 + 111601q-18 + 215933q-17 + 204020q-16 + 93241q-15 - 63419q-14 - 172048q-13 - 186238q-12 - 110076q-11 + 20176q-10 + 125608q-9 + 160268q-8 + 116494q-7 + 14371q-6 - 81621q-5 - 128455q-4 - 111581q-3 - 38228q-2 + 42739q-1 + 94484 + 98221q + 50763q2 - 12618q3 - 62159q4 - 78875q5 - 53130q6 - 7965q7 + 34751q8 + 57676q9 + 47751q10 + 18959q11 - 14077q12 - 37695q13 - 38050q14 - 22298q15 + 863q16 + 21458q17 + 26846q18 + 20328q19 + 6061q20 - 9805q21 - 16819q22 - 15843q23 - 8147q24 + 2824q25 + 9072q26 + 10657q27 + 7458q28 + 722q29 - 3948q30 - 6380q31 - 5643q32 - 1803q33 + 1186q34 + 3273q35 + 3579q36 + 1744q37 + 161q38 - 1402q39 - 2126q40 - 1271q41 - 427q42 + 499q43 + 1028q44 + 689q45 + 477q46 - 29q47 - 517q48 - 409q49 - 287q50 - 6q51 + 200q52 + 120q53 + 172q54 + 96q55 - 83q56 - 87q57 - 90q58 - 17q59 + 43q60 - 5q61 + 31q62 + 35q63 - 6q64 - 12q65 - 23q66 - 3q67 + 13q68 - 5q69 + 7q71 - 5q74 + 3q76 - q77 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 31]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12], > X[17, 7, 18, 6], X[7, 14, 8, 15], X[13, 16, 14, 17], X[15, 8, 16, 9], > X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[9, 31]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3] |
In[4]:= | DTCode[Knot[9, 31]] |
Out[4]= | DTCode[4, 10, 12, 14, 2, 18, 16, 8, 6] |
In[5]:= | br = BR[Knot[9, 31]] |
Out[5]= | BR[4, {-1, -1, 2, -1, 2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 31]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 31]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 31]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 31]][t] |
Out[10]= | -3 5 13 2 3 -17 + t - -- + -- + 13 t - 5 t + t 2 t t |
In[11]:= | Conway[Knot[9, 31]][z] |
Out[11]= | 2 4 6 1 + 2 z + z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 31], Knot[11, NonAlternating, 11], Knot[11, NonAlternating, 22], > Knot[11, NonAlternating, 112], Knot[11, NonAlternating, 127]} |
In[13]:= | {KnotDet[Knot[9, 31]], KnotSignature[Knot[9, 31]]} |
Out[13]= | {55, -2} |
In[14]:= | Jones[Knot[9, 31]][q] |
Out[14]= | -7 4 6 8 10 9 8 2 -5 + q - -- + -- - -- + -- - -- + - + 3 q - q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 31]} |
In[16]:= | A2Invariant[Knot[9, 31]][q] |
Out[16]= | -22 -20 2 -16 2 -12 -10 3 -4 3 2 4 6 q - q - --- + q - --- + q + q + -- - q + -- - q + q - q 18 14 6 2 q q q q |
In[17]:= | HOMFLYPT[Knot[9, 31]][a, z] |
Out[17]= | 2 4 2 2 2 4 2 6 2 4 2 4 4 4 -1 + 4 a - 2 a - 2 z + 7 a z - 4 a z + a z - z + 4 a z - 2 a z + 2 6 > a z |
In[18]:= | Kauffman[Knot[9, 31]][a, z] |
Out[18]= | 2 4 z 3 5 2 2 2 4 2 -1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 5 z + 15 a z + 13 a z + a 3 6 2 2 z 3 3 3 5 3 7 3 4 2 4 > 3 a z - ---- - 3 a z - 5 a z - 8 a z - 4 a z - 7 z - 21 a z - a 5 4 4 6 4 8 4 z 5 3 5 5 5 7 5 > 23 a z - 8 a z + a z + -- - 3 a z - 7 a z + a z + 4 a z + a 6 2 6 4 6 6 6 7 3 7 5 7 2 8 > 3 z + 8 a z + 11 a z + 6 a z + 3 a z + 7 a z + 4 a z + a z + 4 8 > a z |
In[19]:= | {Vassiliev[2][Knot[9, 31]], Vassiliev[3][Knot[9, 31]]} |
Out[19]= | {2, -2} |
In[20]:= | Kh[Knot[9, 31]][q, t] |
Out[20]= | 4 5 1 3 1 3 3 5 3 5 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 5 4 5 2 t 2 3 2 5 3 > ----- + ---- + ---- + --- + 3 q t + q t + 2 q t + q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[9, 31], 2][q] |
Out[21]= | -20 4 2 12 21 -15 38 46 7 71 65 21 -27 + q - --- + --- + --- - --- + q + --- - --- - --- + --- - --- - -- + 19 18 17 16 14 13 12 11 10 9 q q q q q q q q q q 93 66 32 91 48 35 66 24 2 3 4 > -- - -- - -- + -- - -- - -- + -- - -- + 33 q - 6 q - 13 q + 10 q - 8 7 6 5 4 3 2 q q q q q q q q 6 7 > 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 931 |
|