© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 929Visit 929's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 929's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,11,17,12 X10,4,11,3 X2,15,3,16 X14,5,15,6 X18,8,1,7 X4,10,5,9 X12,17,13,18 X8,13,9,14 |
Gauss Code: | {1, -4, 3, -7, 5, -1, 6, -9, 7, -3, 2, -8, 9, -5, 4, -2, 8, -6} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 18 4 16 8 2 12 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 5t-2 + 12t-1 - 15 + 12t - 5t2 + t3 |
Conway Polynomial: | 1 + z2 + z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {928, 10163, K11n87, ...} |
Determinant and Signature: | {51, -2} |
Jones Polynomial: | - q-6 + 3q-5 - 6q-4 + 8q-3 - 8q-2 + 9q-1 - 7 + 5q - 3q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-18 + q-16 - 2q-14 - q-12 + 2q-10 + 4q-6 + q-2 - 2q2 + q4 - q6 + q10 |
HOMFLY-PT Polynomial: | a-2 + a-2z2 - 3 - 5z2 - 2z4 + 5a2 + 7a2z2 + 4a2z4 + a2z6 - 2a4 - 2a4z2 - a4z4 |
Kauffman Polynomial: | - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 - a-1z + 9a-1z3 - 10a-1z5 + 3a-1z7 - 3 + 12z2 - 11z4 - z6 + 2z8 - az + 14az3 - 24az5 + 9az7 - 5a2 + 17a2z2 - 24a2z4 + 6a2z6 + 2a2z8 + 2a3z - a3z3 - 8a3z5 + 6a3z7 - 2a4 + 8a4z2 - 13a4z4 + 8a4z6 + 2a5z - 5a5z3 + 6a5z5 + 3a6z4 + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 929. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 3q-16 + 3q-15 + 4q-14 - 16q-13 + 15q-12 + 12q-11 - 42q-10 + 29q-9 + 27q-8 - 65q-7 + 32q-6 + 43q-5 - 71q-4 + 20q-3 + 51q-2 - 60q-1 + 4 + 46q - 37q2 - 8q3 + 30q4 - 13q5 - 9q6 + 11q7 - q8 - 3q9 + q10 |
3 | - q-33 + 3q-32 - 3q-31 - q-30 + 4q-29 + 3q-28 - 12q-27 - 3q-26 + 29q-25 + 2q-24 - 58q-23 - 2q-22 + 94q-21 + 16q-20 - 144q-19 - 37q-18 + 190q-17 + 69q-16 - 222q-15 - 113q-14 + 243q-13 + 147q-12 - 232q-11 - 190q-10 + 222q-9 + 206q-8 - 180q-7 - 231q-6 + 149q-5 + 230q-4 - 96q-3 - 237q-2 + 57q-1 + 220 - 8q - 199q2 - 32q3 + 165q4 + 62q5 - 121q6 - 78q7 + 76q8 + 78q9 - 36q10 - 64q11 + 8q12 + 42q13 + 7q14 - 23q15 - 9q16 + 9q17 + 5q18 - q19 - 3q20 + q21 |
4 | q-54 - 3q-53 + 3q-52 + q-51 - 7q-50 + 9q-49 - 6q-48 + 9q-47 - 8q-46 - 30q-45 + 48q-44 + 8q-43 + 13q-42 - 67q-41 - 110q-40 + 156q-39 + 124q-38 + 49q-37 - 257q-36 - 364q-35 + 307q-34 + 444q-33 + 260q-32 - 522q-31 - 889q-30 + 298q-29 + 862q-28 + 743q-27 - 608q-26 - 1495q-25 + 10q-24 + 1060q-23 + 1284q-22 - 383q-21 - 1830q-20 - 375q-19 + 909q-18 + 1583q-17 - 18q-16 - 1782q-15 - 631q-14 + 552q-13 + 1593q-12 + 314q-11 - 1498q-10 - 747q-9 + 153q-8 + 1429q-7 + 588q-6 - 1091q-5 - 785q-4 - 258q-3 + 1139q-2 + 809q-1 - 585 - 713q - 625q2 + 697q3 + 861q4 - 53q5 - 440q6 - 792q7 + 177q8 + 632q9 + 294q10 - 40q11 - 630q12 - 179q13 + 231q14 + 300q15 + 221q16 - 275q17 - 210q18 - 46q19 + 104q20 + 203q21 - 27q22 - 72q23 - 78q24 - 18q25 + 73q26 + 19q27 + 4q28 - 21q29 - 19q30 + 9q31 + 3q32 + 5q33 - q34 - 3q35 + q36 |
5 | - q-80 + 3q-79 - 3q-78 - q-77 + 7q-76 - 6q-75 - 6q-74 + 9q-73 + 2q-72 + 3q-71 + 4q-70 - 28q-69 - 28q-68 + 37q-67 + 71q-66 + 33q-65 - 71q-64 - 172q-63 - 98q-62 + 170q-61 + 392q-60 + 220q-59 - 323q-58 - 764q-57 - 511q-56 + 490q-55 + 1371q-54 + 1066q-53 - 579q-52 - 2219q-51 - 1978q-50 + 473q-49 + 3159q-48 + 3291q-47 + 42q-46 - 4076q-45 - 4922q-44 - 964q-43 + 4672q-42 + 6628q-41 + 2348q-40 - 4816q-39 - 8171q-38 - 3979q-37 + 4462q-36 + 9284q-35 + 5569q-34 - 3624q-33 - 9832q-32 - 6985q-31 + 2584q-30 + 9875q-29 + 7895q-28 - 1445q-27 - 9411q-26 - 8492q-25 + 451q-24 + 8763q-23 + 8574q-22 + 434q-21 - 7887q-20 - 8550q-19 - 1117q-18 + 7044q-17 + 8239q-16 + 1787q-15 - 6080q-14 - 8012q-13 - 2392q-12 + 5147q-11 + 7581q-10 + 3081q-9 - 4013q-8 - 7193q-7 - 3748q-6 + 2836q-5 + 6521q-4 + 4371q-3 - 1432q-2 - 5707q-1 - 4825 + 62q + 4547q2 + 4966q3 + 1288q4 - 3172q5 - 4724q6 - 2353q7 + 1672q8 + 4016q9 + 3013q10 - 221q11 - 2961q12 - 3154q13 - 939q14 + 1718q15 + 2778q16 + 1651q17 - 532q18 - 2026q19 - 1852q20 - 372q21 + 1140q22 + 1603q23 + 854q24 - 342q25 - 1087q26 - 946q27 - 187q28 + 547q29 + 745q30 + 397q31 - 119q32 - 436q33 - 393q34 - 97q35 + 183q36 + 254q37 + 141q38 - 14q39 - 121q40 - 116q41 - 30q42 + 40q43 + 49q44 + 31q45 + 6q46 - 24q47 - 17q48 - q49 + 3q50 + 3q51 + 5q52 - q53 - 3q54 + q55 |
6 | q-111 - 3q-110 + 3q-109 + q-108 - 7q-107 + 6q-106 + 3q-105 + 3q-104 - 20q-103 + 3q-102 + 23q-101 - 18q-100 + 24q-99 + 8q-98 - 32q-97 - 81q-96 + 12q-95 + 137q-94 + 43q-93 + 68q-92 - 77q-91 - 294q-90 - 337q-89 + 117q-88 + 695q-87 + 558q-86 + 282q-85 - 611q-84 - 1551q-83 - 1472q-82 + 272q-81 + 2617q-80 + 2954q-79 + 1708q-78 - 1818q-77 - 5525q-76 - 5801q-75 - 987q-74 + 6473q-73 + 9869q-72 + 7705q-71 - 1642q-70 - 12912q-69 - 16791q-68 - 8177q-67 + 9222q-66 + 21648q-65 + 22233q-64 + 5635q-63 - 19131q-62 - 33676q-61 - 25265q-60 + 3796q-59 + 31684q-58 + 42812q-57 + 23543q-56 - 15894q-55 - 47621q-54 - 47747q-53 - 12630q-52 + 30939q-51 + 58777q-50 + 45690q-49 - 1443q-48 - 49510q-47 - 63985q-46 - 32354q-45 + 19047q-44 + 61882q-43 + 60548q-42 + 15693q-41 - 40453q-40 - 67352q-39 - 44936q-38 + 4746q-37 + 54687q-36 + 63623q-35 + 26676q-34 - 28849q-33 - 61616q-32 - 48015q-31 - 5020q-30 + 44895q-29 + 59547q-28 + 30914q-27 - 19825q-26 - 53611q-25 - 46555q-24 - 10914q-23 + 36146q-22 + 54119q-21 + 33152q-20 - 12014q-19 - 45769q-18 - 45092q-17 - 17057q-16 + 26735q-15 + 48571q-14 + 36528q-13 - 2035q-12 - 36056q-11 - 43540q-10 - 25216q-9 + 13842q-8 + 40200q-7 + 39573q-6 + 10767q-5 - 21762q-4 - 38225q-3 - 32653q-2 - 2422q-1 + 26018 + 37520q + 22509q2 - 3472q3 - 25683q4 - 33580q5 - 17140q6 + 7049q7 + 26530q8 + 26434q9 + 12872q10 - 7497q11 - 24071q12 - 22746q13 - 9630q14 + 9107q15 + 18793q16 + 19072q17 + 8110q18 - 7864q19 - 16099q20 - 15491q21 - 5335q22 + 4715q23 + 12976q24 + 12713q25 + 4702q26 - 3787q27 - 9751q28 - 8939q29 - 5071q30 + 2474q31 + 7131q32 + 6942q33 + 3704q34 - 1195q35 - 4131q36 - 5620q37 - 2883q38 + 412q39 + 2741q40 + 3431q41 + 2230q42 + 492q43 - 1870q44 - 2121q45 - 1558q46 - 376q47 + 702q48 + 1242q49 + 1217q50 + 207q51 - 271q52 - 647q53 - 581q54 - 324q55 + 74q56 + 393q57 + 241q58 + 180q59 - 6q60 - 101q61 - 164q62 - 90q63 + 24q64 + 18q65 + 54q66 + 32q67 + 18q68 - 22q69 - 20q70 + q71 - 7q72 + 3q73 + 3q74 + 5q75 - q76 - 3q77 + q78 |
7 | - q-147 + 3q-146 - 3q-145 - q-144 + 7q-143 - 6q-142 - 3q-141 + 8q-139 + 15q-138 - 29q-137 - 9q-136 + 22q-135 - 10q-134 + 11q-133 + 12q-132 + 27q-131 + 9q-130 - 128q-129 - 71q-128 + 64q-127 + 102q-126 + 201q-125 + 97q-124 - 74q-123 - 283q-122 - 623q-121 - 325q-120 + 359q-119 + 983q-118 + 1386q-117 + 627q-116 - 809q-115 - 2289q-114 - 3180q-113 - 1701q-112 + 1609q-111 + 5121q-110 + 6942q-109 + 4013q-108 - 2628q-107 - 9910q-106 - 13916q-105 - 9348q-104 + 2775q-103 + 17297q-102 + 26152q-101 + 20036q-100 - 477q-99 - 26780q-98 - 44848q-97 - 39001q-96 - 7869q-95 + 36131q-94 + 70437q-93 + 69152q-92 + 26537q-91 - 41494q-90 - 100865q-89 - 111331q-88 - 59298q-87 + 36969q-86 + 130712q-85 + 163644q-84 + 108723q-83 - 16964q-82 - 153536q-81 - 220234q-80 - 172351q-79 - 21770q-78 + 161037q-77 + 272303q-76 + 244798q-75 + 78719q-74 - 148664q-73 - 311118q-72 - 316152q-71 - 147897q-70 + 115480q-69 + 329393q-68 + 376410q-67 + 220557q-66 - 65768q-65 - 325264q-64 - 418086q-63 - 286250q-62 + 8157q-61 + 301531q-60 + 437136q-59 + 336921q-58 + 48726q-57 - 264871q-56 - 435963q-55 - 368829q-54 - 96262q-53 + 223868q-52 + 419089q-51 + 381977q-50 + 131056q-49 - 184955q-48 - 394208q-47 - 381130q-46 - 152125q-45 + 153100q-44 + 366896q-43 + 371166q-42 + 163029q-41 - 128398q-40 - 341928q-39 - 358376q-38 - 167583q-37 + 109928q-36 + 320128q-35 + 345916q-34 + 171077q-33 - 93702q-32 - 301601q-31 - 336443q-30 - 176163q-29 + 76834q-28 + 283380q-27 + 329272q-26 + 185744q-25 - 55747q-24 - 263598q-23 - 323576q-22 - 199228q-21 + 29174q-20 + 238621q-19 + 316237q-18 + 216215q-17 + 4237q-16 - 206976q-15 - 304972q-14 - 233495q-13 - 42882q-12 + 166696q-11 + 285755q-10 + 248069q-9 + 85277q-8 - 118052q-7 - 256846q-6 - 255411q-5 - 126646q-4 + 62457q-3 + 215796q-2 + 251327q-1 + 162847 - 3501q - 163734q2 - 232727q3 - 187532q4 - 53039q5 + 102902q6 + 198060q7 + 196107q8 + 100893q9 - 39161q10 - 149479q11 - 185483q12 - 132996q13 - 20006q14 + 91657q15 + 155949q16 + 144984q17 + 66891q18 - 32813q19 - 112112q20 - 135477q21 - 94844q22 - 18257q23 + 61475q24 + 107869q25 + 101325q26 + 53920q27 - 13652q28 - 69424q29 - 88369q30 - 69988q31 - 22796q32 + 29443q33 + 62149q34 + 67283q35 + 43079q36 + 3323q37 - 31706q38 - 51133q39 - 46602q40 - 23262q41 + 5120q42 + 29101q43 + 37723q44 + 29687q45 + 12056q46 - 8982q47 - 22994q48 - 25401q49 - 18514q50 - 4633q51 + 8580q52 + 15988q53 + 16875q54 + 10330q55 + 1127q56 - 6485q57 - 10883q58 - 9858q59 - 5479q60 - 155q61 + 4805q62 + 6556q63 + 5492q64 + 2878q65 - 617q66 - 2798q67 - 3567q68 - 3091q69 - 1225q70 + 493q71 + 1583q72 + 1944q73 + 1308q74 + 540q75 - 221q76 - 884q77 - 875q78 - 602q79 - 187q80 + 226q81 + 314q82 + 342q83 + 268q84 + 42q85 - 89q86 - 152q87 - 133q88 - 35q89 - 20q90 + 19q91 + 57q92 + 37q93 + 19q94 - 10q95 - 18q96 - 2q97 - 5q98 - 7q99 + 3q100 + 3q101 + 5q102 - q103 - 3q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 29]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 11, 17, 12], X[10, 4, 11, 3], X[2, 15, 3, 16], > X[14, 5, 15, 6], X[18, 8, 1, 7], X[4, 10, 5, 9], X[12, 17, 13, 18], > X[8, 13, 9, 14]] |
In[3]:= | GaussCode[Knot[9, 29]] |
Out[3]= | GaussCode[1, -4, 3, -7, 5, -1, 6, -9, 7, -3, 2, -8, 9, -5, 4, -2, 8, -6] |
In[4]:= | DTCode[Knot[9, 29]] |
Out[4]= | DTCode[6, 10, 14, 18, 4, 16, 8, 2, 12] |
In[5]:= | br = BR[Knot[9, 29]] |
Out[5]= | BR[4, {1, -2, -2, 3, -2, 1, -2, 3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 29]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 29]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 29]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, {4, 7}, 1} |
In[10]:= | alex = Alexander[Knot[9, 29]][t] |
Out[10]= | -3 5 12 2 3 -15 + t - -- + -- + 12 t - 5 t + t 2 t t |
In[11]:= | Conway[Knot[9, 29]][z] |
Out[11]= | 2 4 6 1 + z + z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 28], Knot[9, 29], Knot[10, 163], Knot[11, NonAlternating, 87]} |
In[13]:= | {KnotDet[Knot[9, 29]], KnotSignature[Knot[9, 29]]} |
Out[13]= | {51, -2} |
In[14]:= | Jones[Knot[9, 29]][q] |
Out[14]= | -6 3 6 8 8 9 2 3 -7 - q + -- - -- + -- - -- + - + 5 q - 3 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 29]} |
In[16]:= | A2Invariant[Knot[9, 29]][q] |
Out[16]= | -18 -16 2 -12 2 4 -2 2 4 6 10 -q + q - --- - q + --- + -- + q - 2 q + q - q + q 14 10 6 q q q |
In[17]:= | HOMFLYPT[Knot[9, 29]][a, z] |
Out[17]= | 2 -2 2 4 2 z 2 2 4 2 4 2 4 -3 + a + 5 a - 2 a - 5 z + -- + 7 a z - 2 a z - 2 z + 4 a z - 2 a 4 4 2 6 > a z + a z |
In[18]:= | Kauffman[Knot[9, 29]][a, z] |
Out[18]= | 2 -2 2 4 z 3 5 2 3 z 2 2 -3 - a - 5 a - 2 a - - - a z + 2 a z + 2 a z + 12 z + ---- + 17 a z + a 2 a 3 4 4 2 9 z 3 3 3 5 3 7 3 4 3 z > 8 a z + ---- + 14 a z - a z - 5 a z + a z - 11 z - ---- - a 2 a 5 2 4 4 4 6 4 10 z 5 3 5 5 5 6 > 24 a z - 13 a z + 3 a z - ----- - 24 a z - 8 a z + 6 a z - z + a 6 7 z 2 6 4 6 3 z 7 3 7 8 2 8 > -- + 6 a z + 8 a z + ---- + 9 a z + 6 a z + 2 z + 2 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[9, 29]], Vassiliev[3][Knot[9, 29]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[9, 29]][q, t] |
Out[20]= | 5 5 1 2 1 4 2 4 4 4 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 4 3 t 2 3 2 3 3 5 3 7 4 > ---- + --- + 4 q t + 2 q t + 3 q t + q t + 2 q t + q t 3 q q t |
In[21]:= | ColouredJones[Knot[9, 29], 2][q] |
Out[21]= | -17 3 3 4 16 15 12 42 29 27 65 32 43 4 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - 16 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 71 20 51 60 2 3 4 5 6 7 > -- + -- + -- - -- + 46 q - 37 q - 8 q + 30 q - 13 q - 9 q + 11 q - 4 3 2 q q q q 8 9 10 > q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 929 |
|