© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 928Visit 928's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 928's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X15,18,16,1 X9,16,10,17 X17,10,18,11 X7283 |
Gauss Code: | {-1, 9, -2, 1, -4, 5, -9, 2, -7, 8, -3, 4, -5, 3, -6, 7, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 16 14 6 18 10 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 5t-2 + 12t-1 - 15 + 12t - 5t2 + t3 |
Conway Polynomial: | 1 + z2 + z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {929, 10163, K11n87, ...} |
Determinant and Signature: | {51, -2} |
Jones Polynomial: | q-7 - 3q-6 + 5q-5 - 8q-4 + 9q-3 - 8q-2 + 8q-1 - 5 + 3q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - q-18 + q-16 - 3q-14 - q-12 + 4q-6 + 3q-2 - q2 + q4 - q6 |
HOMFLY-PT Polynomial: | - 1 - 2z2 - z4 + 5a2 + 7a2z2 + 4a2z4 + a2z6 - 4a4 - 5a4z2 - 2a4z4 + a6 + a6z2 |
Kauffman Polynomial: | a-1z - 2a-1z3 + a-1z5 - 1 + 5z2 - 7z4 + 3z6 + 3az - 4az3 - 3az5 + 3az7 - 5a2 + 14a2z2 - 19a2z4 + 7a2z6 + a2z8 + 6a3z - 7a3z3 - 5a3z5 + 6a3z7 - 4a4 + 12a4z2 - 17a4z4 + 8a4z6 + a4z8 + 6a5z - 9a5z3 + 2a5z5 + 3a5z7 - a6 + 2a6z2 - 4a6z4 + 4a6z6 + 2a7z - 4a7z3 + 3a7z5 - a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 928. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 3q-19 + q-18 + 8q-17 - 15q-16 + 3q-15 + 27q-14 - 38q-13 + 56q-11 - 59q-10 - 10q-9 + 77q-8 - 63q-7 - 20q-6 + 78q-5 - 49q-4 - 26q-3 + 61q-2 - 26q-1 - 23 + 33q - 7q2 - 13q3 + 10q4 - 3q6 + q7 |
3 | q-39 - 3q-38 + q-37 + 4q-36 + q-35 - 12q-34 + 25q-32 - q-31 - 44q-30 - 5q-29 + 77q-28 + 13q-27 - 116q-26 - 35q-25 + 166q-24 + 62q-23 - 206q-22 - 110q-21 + 252q-20 + 150q-19 - 274q-18 - 196q-17 + 284q-16 + 235q-15 - 282q-14 - 258q-13 + 256q-12 + 282q-11 - 234q-10 - 276q-9 + 181q-8 + 281q-7 - 144q-6 - 253q-5 + 85q-4 + 235q-3 - 49q-2 - 187q-1 + 4 + 149q + 17q2 - 102q3 - 29q4 + 63q5 + 29q6 - 32q7 - 23q8 + 14q9 + 13q10 - 5q11 - 5q12 + 3q14 - q15 |
4 | q-64 - 3q-63 + q-62 + 4q-61 - 3q-60 + 4q-59 - 15q-58 + 8q-57 + 21q-56 - 16q-55 + 4q-54 - 54q-53 + 33q-52 + 85q-51 - 34q-50 - 24q-49 - 170q-48 + 76q-47 + 256q-46 - 2q-45 - 95q-44 - 453q-43 + 76q-42 + 570q-41 + 187q-40 - 146q-39 - 939q-38 - 85q-37 + 930q-36 + 579q-35 - 44q-34 - 1498q-33 - 441q-32 + 1155q-31 + 1036q-30 + 236q-29 - 1895q-28 - 850q-27 + 1142q-26 + 1355q-25 + 586q-24 - 2007q-23 - 1151q-22 + 940q-21 + 1453q-20 + 882q-19 - 1854q-18 - 1282q-17 + 616q-16 + 1350q-15 + 1093q-14 - 1492q-13 - 1261q-12 + 223q-11 + 1080q-10 + 1195q-9 - 978q-8 - 1087q-7 - 158q-6 + 681q-5 + 1127q-4 - 438q-3 - 758q-2 - 384q-1 + 253 + 850q - 42q2 - 362q3 - 376q4 - 43q5 + 470q6 + 101q7 - 71q8 - 211q9 - 124q10 + 168q11 + 69q12 + 33q13 - 63q14 - 73q15 + 35q16 + 15q17 + 23q18 - 7q19 - 20q20 + 5q21 + 5q23 - 3q25 + q26 |
5 | q-95 - 3q-94 + q-93 + 4q-92 - 3q-91 + q-89 - 7q-88 + 4q-87 + 16q-86 - 9q-85 - 16q-84 - 7q-83 + 34q-81 + 45q-80 - 17q-79 - 89q-78 - 80q-77 + 27q-76 + 161q-75 + 182q-74 - 14q-73 - 302q-72 - 374q-71 - 21q-70 + 497q-69 + 664q-68 + 180q-67 - 727q-66 - 1166q-65 - 466q-64 + 971q-63 + 1809q-62 + 1003q-61 - 1115q-60 - 2657q-59 - 1787q-58 + 1109q-57 + 3532q-56 + 2895q-55 - 854q-54 - 4437q-53 - 4144q-52 + 313q-51 + 5112q-50 + 5562q-49 + 506q-48 - 5651q-47 - 6836q-46 - 1483q-45 + 5788q-44 + 8004q-43 + 2556q-42 - 5726q-41 - 8863q-40 - 3553q-39 + 5392q-38 + 9408q-37 + 4460q-36 - 4894q-35 - 9694q-34 - 5186q-33 + 4343q-32 + 9649q-31 + 5737q-30 - 3621q-29 - 9479q-28 - 6159q-27 + 2976q-26 + 8998q-25 + 6423q-24 - 2104q-23 - 8470q-22 - 6618q-21 + 1345q-20 + 7623q-19 + 6650q-18 - 339q-17 - 6752q-16 - 6579q-15 - 482q-14 + 5552q-13 + 6292q-12 + 1444q-11 - 4379q-10 - 5826q-9 - 2081q-8 + 3015q-7 + 5078q-6 + 2675q-5 - 1806q-4 - 4201q-3 - 2816q-2 + 661q-1 + 3150 + 2771q + 178q2 - 2143q3 - 2382q4 - 733q5 + 1217q6 + 1871q7 + 947q8 - 503q9 - 1284q10 - 928q11 + 47q12 + 767q13 + 734q14 + 176q15 - 360q16 - 502q17 - 234q18 + 124q19 + 289q20 + 185q21 - 8q22 - 127q23 - 126q24 - 32q25 + 57q26 + 64q27 + 18q28 - 9q29 - 24q30 - 23q31 + 7q32 + 13q33 + 2q34 - 5q37 + 3q39 - q40 |
6 | q-132 - 3q-131 + q-130 + 4q-129 - 3q-128 - 3q-126 + 9q-125 - 11q-124 - q-123 + 23q-122 - 19q-121 - 10q-120 - 11q-119 + 40q-118 - 11q-117 + 2q-116 + 65q-115 - 78q-114 - 78q-113 - 53q-112 + 138q-111 + 55q-110 + 84q-109 + 176q-108 - 268q-107 - 361q-106 - 288q-105 + 321q-104 + 379q-103 + 537q-102 + 603q-101 - 667q-100 - 1271q-99 - 1264q-98 + 295q-97 + 1183q-96 + 2111q-95 + 2196q-94 - 904q-93 - 3291q-92 - 4205q-91 - 1141q-90 + 2030q-89 + 5643q-88 + 6698q-87 + 652q-86 - 5932q-85 - 10291q-84 - 6267q-83 + 841q-82 + 10541q-81 + 15478q-80 + 6751q-79 - 6635q-78 - 18597q-77 - 16493q-76 - 5476q-75 + 13711q-74 + 27045q-73 + 18586q-72 - 2067q-71 - 25326q-70 - 29660q-69 - 17701q-68 + 11602q-67 + 36870q-66 + 33253q-65 + 8214q-64 - 26670q-63 - 40782q-62 - 32331q-61 + 4005q-60 + 41019q-59 + 45495q-58 + 20573q-57 - 22440q-56 - 46153q-55 - 44279q-54 - 5668q-53 + 39362q-52 + 52020q-51 + 30618q-50 - 15587q-49 - 45889q-48 - 50924q-47 - 13892q-46 + 34408q-45 + 53162q-44 + 36600q-43 - 8743q-42 - 42170q-41 - 52910q-40 - 19698q-39 + 28108q-38 + 50779q-37 + 39425q-36 - 2294q-35 - 36388q-34 - 51840q-33 - 24123q-32 + 20514q-31 + 45815q-30 + 40377q-29 + 4690q-28 - 28343q-27 - 48207q-26 - 27986q-25 + 10925q-24 + 37834q-23 + 39359q-22 + 12345q-21 - 17520q-20 - 41162q-19 - 30369q-18 - 113q-17 + 26341q-16 + 34868q-15 + 18792q-14 - 4947q-13 - 30012q-12 - 28956q-11 - 9865q-10 + 12673q-9 + 25831q-8 + 20900q-7 + 6070q-6 - 16287q-5 - 22321q-4 - 14619q-3 + 573q-2 + 13880q-1 + 17056 + 11604q - 4092q2 - 12319q3 - 12847q4 - 5935q5 + 3327q6 + 9438q7 + 10526q8 + 2593q9 - 3450q10 - 7151q11 - 6111q12 - 2128q13 + 2618q14 + 5874q15 + 3462q16 + 945q17 - 2042q18 - 3156q19 - 2659q20 - 541q21 + 1867q22 + 1713q23 + 1417q24 + 163q25 - 729q26 - 1298q27 - 814q28 + 199q29 + 332q30 + 613q31 + 354q32 + 84q33 - 330q34 - 328q35 - 50q36 - 45q37 + 120q38 + 117q39 + 102q40 - 47q41 - 69q42 - 9q43 - 35q44 + 9q45 + 15q46 + 32q47 - 7q48 - 13q49 + 5q50 - 7q51 + 5q54 - 3q56 + q57 |
7 | q-175 - 3q-174 + q-173 + 4q-172 - 3q-171 - 3q-169 + 5q-168 + 5q-167 - 16q-166 + 6q-165 + 13q-164 - 13q-163 - 4q-162 - 12q-161 + 24q-160 + 37q-159 - 40q-158 + 7q-157 + 8q-156 - 58q-155 - 22q-154 - 39q-153 + 93q-152 + 175q-151 - 13q-150 + 3q-149 - 102q-148 - 284q-147 - 153q-146 - 112q-145 + 311q-144 + 692q-143 + 357q-142 + 149q-141 - 520q-140 - 1200q-139 - 963q-138 - 574q-137 + 838q-136 + 2319q-135 + 2176q-134 + 1349q-133 - 1160q-132 - 3912q-131 - 4318q-130 - 3226q-129 + 1000q-128 + 6185q-127 + 8148q-126 + 6883q-125 + 39q-124 - 8967q-123 - 13772q-122 - 13181q-121 - 3443q-120 + 11359q-119 + 21687q-118 + 23492q-117 + 10356q-116 - 12426q-115 - 31149q-114 - 38092q-113 - 22693q-112 + 9779q-111 + 41122q-110 + 57380q-109 + 41674q-108 - 1678q-107 - 49284q-106 - 79898q-105 - 67912q-104 - 14169q-103 + 53101q-102 + 103690q-101 + 100353q-100 + 38658q-99 - 49806q-98 - 125449q-97 - 137113q-96 - 71539q-95 + 38068q-94 + 142131q-93 + 174334q-92 + 110527q-91 - 16897q-90 - 150896q-89 - 208950q-88 - 152801q-87 - 11527q-86 + 151020q-85 + 236775q-84 + 193919q-83 + 45353q-82 - 142071q-81 - 256636q-80 - 231033q-79 - 80406q-78 + 126626q-77 + 267199q-76 + 260755q-75 + 113998q-74 - 106496q-73 - 269630q-72 - 282689q-71 - 143322q-70 + 84992q-69 + 265617q-68 + 296421q-67 + 166889q-66 - 63871q-65 - 256959q-64 - 303315q-63 - 184961q-62 + 44594q-61 + 246035q-60 + 304994q-59 + 197579q-58 - 27729q-57 - 233293q-56 - 302683q-55 - 206785q-54 + 12336q-53 + 220128q-52 + 298140q-51 + 213003q-50 + 1790q-49 - 205389q-48 - 291142q-47 - 218279q-46 - 16678q-45 + 189379q-44 + 282653q-43 + 222248q-42 + 32240q-41 - 170188q-40 - 271062q-39 - 225958q-38 - 50093q-37 + 148013q-36 + 256635q-35 + 227690q-34 + 68997q-33 - 121219q-32 - 237242q-31 - 227473q-30 - 89270q-29 + 91190q-28 + 213190q-27 + 222542q-26 + 108176q-25 - 57485q-24 - 183037q-23 - 212770q-22 - 124698q-21 + 23194q-20 + 148502q-19 + 195649q-18 + 135374q-17 + 10404q-16 - 109851q-15 - 172112q-14 - 139390q-13 - 39263q-12 + 70799q-11 + 142082q-10 + 134199q-9 + 61444q-8 - 33227q-7 - 108325q-6 - 121116q-5 - 74387q-4 + 1668q-3 + 73445q-2 + 100568q-1 + 77588 + 22305q - 41156q2 - 76194q3 - 71811q4 - 36503q5 + 14529q6 + 50828q7 + 59441q8 + 41509q9 + 4392q10 - 28150q11 - 43597q12 - 38842q13 - 15230q14 + 10541q15 + 27719q16 + 31318q17 + 18712q18 + 967q19 - 14196q20 - 21869q21 - 17245q22 - 6746q23 + 4750q24 + 13048q25 + 13005q26 + 8024q27 + 747q28 - 6202q29 - 8261q30 - 6867q31 - 2974q32 + 2038q33 + 4352q34 + 4635q35 + 3047q36 + 104q37 - 1670q38 - 2630q39 - 2361q40 - 758q41 + 412q42 + 1204q43 + 1362q44 + 674q45 + 200q46 - 378q47 - 749q48 - 472q49 - 218q50 + 108q51 + 291q52 + 183q53 + 181q54 + 62q55 - 123q56 - 112q57 - 93q58 - 12q59 + 48q60 + 3q61 + 37q62 + 35q63 - 9q64 - 15q65 - 23q66 - 2q67 + 13q68 - 5q69 + 7q71 - 5q74 + 3q76 - q77 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 28]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], > X[13, 7, 14, 6], X[15, 18, 16, 1], X[9, 16, 10, 17], X[17, 10, 18, 11], > X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[9, 28]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -4, 5, -9, 2, -7, 8, -3, 4, -5, 3, -6, 7, -8, 6] |
In[4]:= | DTCode[Knot[9, 28]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 14, 6, 18, 10] |
In[5]:= | br = BR[Knot[9, 28]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 28]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 28]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 28]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 28]][t] |
Out[10]= | -3 5 12 2 3 -15 + t - -- + -- + 12 t - 5 t + t 2 t t |
In[11]:= | Conway[Knot[9, 28]][z] |
Out[11]= | 2 4 6 1 + z + z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 28], Knot[9, 29], Knot[10, 163], Knot[11, NonAlternating, 87]} |
In[13]:= | {KnotDet[Knot[9, 28]], KnotSignature[Knot[9, 28]]} |
Out[13]= | {51, -2} |
In[14]:= | Jones[Knot[9, 28]][q] |
Out[14]= | -7 3 5 8 9 8 8 2 -5 + q - -- + -- - -- + -- - -- + - + 3 q - q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 28]} |
In[16]:= | A2Invariant[Knot[9, 28]][q] |
Out[16]= | -22 -18 -16 3 -12 4 3 2 4 6 q - q + q - --- - q + -- + -- - q + q - q 14 6 2 q q q |
In[17]:= | HOMFLYPT[Knot[9, 28]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 6 2 4 2 4 -1 + 5 a - 4 a + a - 2 z + 7 a z - 5 a z + a z - z + 4 a z - 4 4 2 6 > 2 a z + a z |
In[18]:= | Kauffman[Knot[9, 28]][a, z] |
Out[18]= | 2 4 6 z 3 5 7 2 -1 - 5 a - 4 a - a + - + 3 a z + 6 a z + 6 a z + 2 a z + 5 z + a 3 2 2 4 2 6 2 8 2 2 z 3 3 3 5 3 > 14 a z + 12 a z + 2 a z - a z - ---- - 4 a z - 7 a z - 9 a z - a 5 7 3 4 2 4 4 4 6 4 8 4 z 5 > 4 a z - 7 z - 19 a z - 17 a z - 4 a z + a z + -- - 3 a z - a 3 5 5 5 7 5 6 2 6 4 6 6 6 7 > 5 a z + 2 a z + 3 a z + 3 z + 7 a z + 8 a z + 4 a z + 3 a z + 3 7 5 7 2 8 4 8 > 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 28]], Vassiliev[3][Knot[9, 28]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[9, 28]][q, t] |
Out[20]= | 4 5 1 2 1 3 2 5 3 4 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 5 4 4 2 t 2 3 2 5 3 > ----- + ---- + ---- + --- + 3 q t + q t + 2 q t + q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[9, 28], 2][q] |
Out[21]= | -20 3 -18 8 15 3 27 38 56 59 10 77 -23 + q - --- + q + --- - --- + --- + --- - --- + --- - --- - -- + -- - 19 17 16 15 14 13 11 10 9 8 q q q q q q q q q q 63 20 78 49 26 61 26 2 3 4 6 7 > -- - -- + -- - -- - -- + -- - -- + 33 q - 7 q - 13 q + 10 q - 3 q + q 7 6 5 4 3 2 q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 928 |
|