© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
9.26
926
9.28
928
    9.27
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 927   

Visit 927's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 927's page at Knotilus!

Acknowledgement

9.27
KnotPlot

PD Presentation: X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X13,17,14,16 X7,14,8,15 X15,6,16,7 X17,9,18,8 X9,2,10,3

Gauss Code: {-1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3}

DT (Dowker-Thistlethwaite) Code: 4 10 12 14 2 18 16 6 8

Minimum Braid Representative:


Length is 9, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 1 3 2 / 4--6 1

Alexander Polynomial: - t-3 + 5t-2 - 11t-1 + 15 - 11t + 5t2 - t3

Conway Polynomial: 1 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {K11n4, K11n21, K11n172, ...}

Determinant and Signature: {49, 0}

Jones Polynomial: - q-5 + 3q-4 - 5q-3 + 7q-2 - 8q-1 + 9 - 7q + 5q2 - 3q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11n83, ...}

A2 (sl(3)) Invariant: - q-16 + q-12 - q-10 + 2q-8 + 2q-2 - 1 + 2q2 - 2q4 + q8 - q10 + q12

HOMFLY-PT Polynomial: a-2 + 2a-2z2 + a-2z4 - 2 - 6z2 - 4z4 - z6 + 3a2 + 5a2z2 + 2a2z4 - a4 - a4z2

Kauffman Polynomial: - a-4z2 + a-4z4 + a-3z - 4a-3z3 + 3a-3z5 - a-2 + 3a-2z2 - 5a-2z4 + 4a-2z6 + 2a-1z - 4a-1z3 + 3a-1z7 - 2 + 12z2 - 16z4 + 7z6 + z8 + 2az - 8az5 + 6az7 - 3a2 + 12a2z2 - 17a2z4 + 6a2z6 + a2z8 + 2a3z - 2a3z3 - 4a3z5 + 3a3z7 - a4 + 4a4z2 - 7a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 927. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9         1
j = 7        2 
j = 5       31 
j = 3      42  
j = 1     53   
j = -1    45    
j = -3   34     
j = -5  24      
j = -7 13       
j = -9 2        
j = -111         

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 3q-14 + 10q-12 - 12q-11 - 7q-10 + 30q-9 - 21q-8 - 24q-7 + 54q-6 - 23q-5 - 44q-4 + 70q-3 - 18q-2 - 56q-1 + 70 - 9q - 52q2 + 50q3 - q4 - 34q5 + 25q6 + 2q7 - 14q8 + 8q9 + q10 - 3q11 + q12
3 - q-30 + 3q-29 - 5q-27 - 5q-26 + 12q-25 + 14q-24 - 20q-23 - 29q-22 + 24q-21 + 54q-20 - 23q-19 - 86q-18 + 13q-17 + 122q-16 + 6q-15 - 154q-14 - 39q-13 + 186q-12 + 74q-11 - 207q-10 - 116q-9 + 224q-8 + 151q-7 - 225q-6 - 189q-5 + 227q-4 + 209q-3 - 208q-2 - 232q-1 + 195 + 227q - 156q2 - 224q3 + 126q4 + 199q5 - 88q6 - 169q7 + 56q8 + 132q9 - 31q10 - 95q11 + 14q12 + 64q13 - 6q14 - 38q15 + q16 + 22q17 - q18 - 11q19 + q20 + 4q21 + q22 - 3q23 + q24
4 q-50 - 3q-49 + 5q-47 + 5q-45 - 19q-44 - 7q-43 + 20q-42 + 12q-41 + 35q-40 - 62q-39 - 52q-38 + 26q-37 + 46q-36 + 142q-35 - 100q-34 - 156q-33 - 49q-32 + 55q-31 + 367q-30 - 44q-29 - 267q-28 - 252q-27 - 63q-26 + 642q-25 + 163q-24 - 260q-23 - 528q-22 - 363q-21 + 840q-20 + 467q-19 - 83q-18 - 761q-17 - 768q-16 + 890q-15 + 752q-14 + 205q-13 - 884q-12 - 1153q-11 + 819q-10 + 944q-9 + 499q-8 - 895q-7 - 1425q-6 + 669q-5 + 1017q-4 + 734q-3 - 800q-2 - 1532q-1 + 457 + 944q + 870q2 - 585q3 - 1432q4 + 201q5 + 714q6 + 866q7 - 297q8 - 1129q9 - 3q10 + 392q11 + 694q12 - 48q13 - 714q14 - 81q15 + 115q16 + 429q17 + 66q18 - 353q19 - 53q20 - 17q21 + 197q22 + 63q23 - 139q24 - 8q25 - 33q26 + 68q27 + 27q28 - 47q29 + 8q30 - 15q31 + 18q32 + 7q33 - 14q34 + 4q35 - 3q36 + 4q37 + q38 - 3q39 + q40
5 - q-75 + 3q-74 - 5q-72 + 2q-69 + 12q-68 + 7q-67 - 20q-66 - 21q-65 - 9q-64 + 12q-63 + 51q-62 + 48q-61 - 19q-60 - 94q-59 - 95q-58 - 12q-57 + 125q-56 + 203q-55 + 93q-54 - 153q-53 - 334q-52 - 243q-51 + 108q-50 + 470q-49 + 500q-48 + 40q-47 - 584q-46 - 818q-45 - 330q-44 + 583q-43 + 1171q-42 + 789q-41 - 432q-40 - 1486q-39 - 1370q-38 + 64q-37 + 1703q-36 + 2018q-35 + 502q-34 - 1725q-33 - 2685q-32 - 1246q-31 + 1578q-30 + 3261q-29 + 2075q-28 - 1198q-27 - 3728q-26 - 2966q-25 + 713q-24 + 4034q-23 + 3789q-22 - 92q-21 - 4205q-20 - 4563q-19 - 519q-18 + 4245q-17 + 5184q-16 + 1173q-15 - 4206q-14 - 5728q-13 - 1711q-12 + 4060q-11 + 6096q-10 + 2288q-9 - 3884q-8 - 6399q-7 - 2702q-6 + 3588q-5 + 6486q-4 + 3191q-3 - 3235q-2 - 6523q-1 - 3480 + 2743q + 6272q2 + 3834q3 - 2174q4 - 5930q5 - 3963q6 + 1523q7 + 5300q8 + 4026q9 - 846q10 - 4563q11 - 3853q12 + 210q13 + 3676q14 + 3524q15 + 305q16 - 2764q17 - 3026q18 - 659q19 + 1903q20 + 2440q21 + 823q22 - 1180q23 - 1825q24 - 825q25 + 638q26 + 1255q27 + 720q28 - 278q29 - 808q30 - 543q31 + 84q32 + 459q33 + 376q34 + 15q35 - 254q36 - 231q37 - 30q38 + 121q39 + 123q40 + 32q41 - 51q42 - 68q43 - 19q44 + 30q45 + 25q46 + 2q47 - 2q48 - 13q49 - 8q50 + 13q51 + 3q52 - 6q53 + q54 - 3q56 + 4q57 + q58 - 3q59 + q60
6 q-105 - 3q-104 + 5q-102 - 7q-99 + 5q-98 - 12q-97 - 7q-96 + 29q-95 + 12q-94 + 9q-93 - 29q-92 - q-91 - 58q-90 - 44q-89 + 79q-88 + 80q-87 + 89q-86 - 37q-85 - 227q-83 - 238q-82 + 65q-81 + 208q-80 + 380q-79 + 167q-78 + 203q-77 - 496q-76 - 797q-75 - 392q-74 + 80q-73 + 799q-72 + 870q-71 + 1202q-70 - 326q-69 - 1520q-68 - 1693q-67 - 1130q-66 + 487q-65 + 1696q-64 + 3455q-63 + 1418q-62 - 1163q-61 - 3236q-60 - 3888q-59 - 2007q-58 + 1013q-57 + 6032q-56 + 5182q-55 + 1982q-54 - 2991q-53 - 6939q-52 - 7051q-51 - 3018q-50 + 6546q-49 + 9410q-48 + 8115q-47 + 946q-46 - 7710q-45 - 12819q-44 - 10332q-43 + 3148q-42 + 11451q-41 + 15172q-40 + 8272q-39 - 4583q-38 - 16662q-37 - 18663q-36 - 3615q-35 + 9923q-34 + 20570q-33 + 16648q-32 + 1624q-31 - 17374q-30 - 25504q-29 - 11405q-28 + 5727q-27 + 23215q-26 + 23742q-25 + 8657q-24 - 15749q-23 - 29822q-22 - 18128q-21 + 801q-20 + 23696q-19 + 28621q-18 + 14740q-17 - 13222q-16 - 31967q-15 - 23043q-14 - 3607q-13 + 22950q-12 + 31516q-11 + 19418q-10 - 10430q-9 - 32451q-8 - 26411q-7 - 7491q-6 + 21116q-5 + 32709q-4 + 23051q-3 - 6955q-2 - 31040q-1 - 28381 - 11382q + 17494q2 + 31734q3 + 25655q4 - 2200q5 - 26869q6 - 28245q7 - 15114q8 + 11576q9 + 27600q10 + 26221q11 + 3325q12 - 19617q13 - 24815q14 - 17280q15 + 4318q16 + 20147q17 + 23398q18 + 7676q19 - 10774q20 - 18033q21 - 16228q22 - 1796q23 + 11236q24 + 17250q25 + 8867q26 - 3275q27 - 9990q28 - 11996q29 - 4578q30 + 3935q31 + 10003q32 + 6888q33 + 708q34 - 3643q35 - 6737q36 - 4115q37 + 103q38 + 4381q39 + 3757q40 + 1474q41 - 428q42 - 2782q43 - 2346q44 - 839q45 + 1430q46 + 1420q47 + 873q48 + 414q49 - 826q50 - 932q51 - 586q52 + 381q53 + 350q54 + 284q55 + 330q56 - 176q57 - 269q58 - 242q59 + 114q60 + 43q61 + 38q62 + 139q63 - 29q64 - 57q65 - 73q66 + 48q67 - 5q68 - 12q69 + 40q70 - 7q71 - 7q72 - 18q73 + 20q74 - 2q75 - 10q76 + 9q77 - 3q78 - 3q80 + 4q81 + q82 - 3q83 + q84
7 - q-140 + 3q-139 - 5q-137 + 7q-134 - 5q-132 + 12q-131 - 2q-130 - 20q-129 - 12q-128 - 9q-127 + 29q-126 + 29q-125 - 3q-124 + 43q-123 - 5q-122 - 65q-121 - 75q-120 - 97q-119 + 43q-118 + 117q-117 + 93q-116 + 196q-115 + 78q-114 - 120q-113 - 246q-112 - 468q-111 - 213q-110 + 120q-109 + 306q-108 + 754q-107 + 640q-106 + 231q-105 - 306q-104 - 1265q-103 - 1330q-102 - 810q-101 - 61q-100 + 1532q-99 + 2246q-98 + 2100q-97 + 1172q-96 - 1477q-95 - 3265q-94 - 3898q-93 - 3173q-92 + 353q-91 + 3688q-90 + 6056q-89 + 6480q-88 + 2343q-87 - 2965q-86 - 7935q-85 - 10683q-84 - 6901q-83 + 7q-82 + 8382q-81 + 15164q-80 + 13504q-79 + 5811q-78 - 6407q-77 - 18685q-76 - 21232q-75 - 14663q-74 + 628q-73 + 19680q-72 + 29011q-71 + 26200q-70 + 9320q-69 - 16789q-68 - 34988q-67 - 39145q-66 - 23359q-65 + 8960q-64 + 37531q-63 + 51752q-62 + 40538q-61 + 4051q-60 - 35356q-59 - 62302q-58 - 59219q-57 - 21387q-56 + 27826q-55 + 69026q-54 + 77551q-53 + 42006q-52 - 15247q-51 - 71343q-50 - 93870q-49 - 63810q-48 - 1236q-47 + 68749q-46 + 106842q-45 + 85363q-44 + 20326q-43 - 62182q-42 - 116130q-41 - 104949q-40 - 40112q-39 + 52501q-38 + 121506q-37 + 121883q-36 + 59434q-35 - 41201q-34 - 123865q-33 - 135600q-32 - 76916q-31 + 29301q-30 + 123742q-29 + 146427q-28 + 92245q-27 - 18015q-26 - 122222q-25 - 154443q-24 - 105075q-23 + 7502q-22 + 119763q-21 + 160641q-20 + 115820q-19 + 1602q-18 - 116950q-17 - 164926q-16 - 124683q-15 - 10181q-14 + 113539q-13 + 168325q-12 + 132477q-11 + 17979q-10 - 109677q-9 - 170054q-8 - 139098q-7 - 26401q-6 + 104201q-5 + 170719q-4 + 145379q-3 + 35059q-2 - 97203q-1 - 168875 - 150246q - 45095q2 + 87139q3 + 164612q4 + 154039q5 + 55602q6 - 74618q7 - 156376q8 - 154976q9 - 66536q10 + 58779q11 + 144158q12 + 152853q13 + 76399q14 - 41030q15 - 127548q16 - 146119q17 - 84114q18 + 22113q19 + 107278q20 + 134783q21 + 88237q22 - 4031q23 - 84539q24 - 118947q25 - 87846q26 - 11558q27 + 61251q28 + 99660q29 + 82637q30 + 23183q31 - 39407q32 - 78632q33 - 73286q34 - 29940q35 + 20902q36 + 57869q37 + 60924q38 + 31862q39 - 6809q40 - 39195q41 - 47360q42 - 29861q43 - 2397q44 + 24009q45 + 34266q46 + 25168q47 + 7179q48 - 12804q49 - 22895q50 - 19328q51 - 8715q52 + 5467q53 + 14172q54 + 13612q55 + 7965q56 - 1353q57 - 7897q58 - 8732q59 - 6374q60 - 629q61 + 4045q62 + 5209q63 + 4477q64 + 1140q65 - 1804q66 - 2758q67 - 2892q68 - 1120q69 + 671q70 + 1377q71 + 1766q72 + 792q73 - 243q74 - 585q75 - 943q76 - 497q77 + q78 + 197q79 + 560q80 + 301q81 - 27q82 - 75q83 - 239q84 - 116q85 - 30q86 - 35q87 + 152q88 + 92q89 - 17q90 - 4q91 - 52q92 - 2q93 - 2q94 - 39q95 + 34q96 + 23q97 - 8q98 - q99 - 12q100 + 10q101 + 5q102 - 15q103 + 5q104 + 5q105 - 3q106 - 3q108 + 4q109 + q110 - 3q111 + q112


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[9, 27]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12], 
 
>   X[13, 17, 14, 16], X[7, 14, 8, 15], X[15, 6, 16, 7], X[17, 9, 18, 8], 
 
>   X[9, 2, 10, 3]]
In[3]:=
GaussCode[Knot[9, 27]]
Out[3]=   
GaussCode[-1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3]
In[4]:=
DTCode[Knot[9, 27]]
Out[4]=   
DTCode[4, 10, 12, 14, 2, 18, 16, 6, 8]
In[5]:=
br = BR[Knot[9, 27]]
Out[5]=   
BR[4, {-1, -1, 2, -1, 2, 2, -3, 2, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 9}
In[7]:=
BraidIndex[Knot[9, 27]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[9, 27]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[9, 27]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 1, 3, 2, {4, 6}, 1}
In[10]:=
alex = Alexander[Knot[9, 27]][t]
Out[10]=   
      -3   5    11             2    3
15 - t   + -- - -- - 11 t + 5 t  - t
            2   t
           t
In[11]:=
Conway[Knot[9, 27]][z]
Out[11]=   
     4    6
1 - z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[9, 27], Knot[11, NonAlternating, 4], Knot[11, NonAlternating, 21], 
 
>   Knot[11, NonAlternating, 172]}
In[13]:=
{KnotDet[Knot[9, 27]], KnotSignature[Knot[9, 27]]}
Out[13]=   
{49, 0}
In[14]:=
Jones[Knot[9, 27]][q]
Out[14]=   
     -5   3    5    7    8            2      3    4
9 - q   + -- - -- + -- - - - 7 q + 5 q  - 3 q  + q
           4    3    2   q
          q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[9, 27], Knot[11, NonAlternating, 83]}
In[16]:=
A2Invariant[Knot[9, 27]][q]
Out[16]=   
      -16    -12    -10   2    2       2      4    8    10    12
-1 - q    + q    - q    + -- + -- + 2 q  - 2 q  + q  - q   + q
                           8    2
                          q    q
In[17]:=
HOMFLYPT[Knot[9, 27]][a, z]
Out[17]=   
                                 2                             4
      -2      2    4      2   2 z       2  2    4  2      4   z       2  4    6
-2 + a   + 3 a  - a  - 6 z  + ---- + 5 a  z  - a  z  - 4 z  + -- + 2 a  z  - z
                                2                              2
                               a                              a
In[18]:=
Kauffman[Knot[9, 27]][a, z]
Out[18]=   
                                                                   2      2
      -2      2    4   z    2 z              3      5         2   z    3 z
-2 - a   - 3 a  - a  + -- + --- + 2 a z + 2 a  z + a  z + 12 z  - -- + ---- + 
                        3    a                                     4     2
                       a                                          a     a
 
                            3      3                                4      4
        2  2      4  2   4 z    4 z       3  3      5  3       4   z    5 z
>   12 a  z  + 4 a  z  - ---- - ---- - 2 a  z  - 2 a  z  - 16 z  + -- - ---- - 
                           3     a                                  4     2
                          a                                        a     a
 
                            5                                        6
        2  4      4  4   3 z         5      3  5    5  5      6   4 z
>   17 a  z  - 7 a  z  + ---- - 8 a z  - 4 a  z  + a  z  + 7 z  + ---- + 
                           3                                        2
                          a                                        a
 
                           7
       2  6      4  6   3 z         7      3  7    8    2  8
>   6 a  z  + 3 a  z  + ---- + 6 a z  + 3 a  z  + z  + a  z
                         a
In[19]:=
{Vassiliev[2][Knot[9, 27]], Vassiliev[3][Knot[9, 27]]}
Out[19]=   
{0, -1}
In[20]:=
Kh[Knot[9, 27]][q, t]
Out[20]=   
5           1        2       1       3       2       4       3      4      4
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2    5  3      7  3    9  4
>   3 q t + 4 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + q  t
In[21]:=
ColouredJones[Knot[9, 27], 2][q]
Out[21]=   
      -15    3    10    12     7    30   21   24   54   23   44   70   18
70 + q    - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - -- - 
             14    12    11    10    9    8    7    6    5    4    3    2
            q     q     q     q     q    q    q    q    q    q    q    q
 
    56             2       3    4       5       6      7       8      9    10
>   -- - 9 q - 52 q  + 50 q  - q  - 34 q  + 25 q  + 2 q  - 14 q  + 8 q  + q   - 
    q
 
       11    12
>   3 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 927
9.26
926
9.28
928