© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 927Visit 927's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 927's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X13,17,14,16 X7,14,8,15 X15,6,16,7 X17,9,18,8 X9,2,10,3 |
Gauss Code: | {-1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 2 18 16 6 8 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 5t-2 - 11t-1 + 15 - 11t + 5t2 - t3 |
Conway Polynomial: | 1 - z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n4, K11n21, K11n172, ...} |
Determinant and Signature: | {49, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 5q-3 + 7q-2 - 8q-1 + 9 - 7q + 5q2 - 3q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n83, ...} |
A2 (sl(3)) Invariant: | - q-16 + q-12 - q-10 + 2q-8 + 2q-2 - 1 + 2q2 - 2q4 + q8 - q10 + q12 |
HOMFLY-PT Polynomial: | a-2 + 2a-2z2 + a-2z4 - 2 - 6z2 - 4z4 - z6 + 3a2 + 5a2z2 + 2a2z4 - a4 - a4z2 |
Kauffman Polynomial: | - a-4z2 + a-4z4 + a-3z - 4a-3z3 + 3a-3z5 - a-2 + 3a-2z2 - 5a-2z4 + 4a-2z6 + 2a-1z - 4a-1z3 + 3a-1z7 - 2 + 12z2 - 16z4 + 7z6 + z8 + 2az - 8az5 + 6az7 - 3a2 + 12a2z2 - 17a2z4 + 6a2z6 + a2z8 + 2a3z - 2a3z3 - 4a3z5 + 3a3z7 - a4 + 4a4z2 - 7a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 927. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + 10q-12 - 12q-11 - 7q-10 + 30q-9 - 21q-8 - 24q-7 + 54q-6 - 23q-5 - 44q-4 + 70q-3 - 18q-2 - 56q-1 + 70 - 9q - 52q2 + 50q3 - q4 - 34q5 + 25q6 + 2q7 - 14q8 + 8q9 + q10 - 3q11 + q12 |
3 | - q-30 + 3q-29 - 5q-27 - 5q-26 + 12q-25 + 14q-24 - 20q-23 - 29q-22 + 24q-21 + 54q-20 - 23q-19 - 86q-18 + 13q-17 + 122q-16 + 6q-15 - 154q-14 - 39q-13 + 186q-12 + 74q-11 - 207q-10 - 116q-9 + 224q-8 + 151q-7 - 225q-6 - 189q-5 + 227q-4 + 209q-3 - 208q-2 - 232q-1 + 195 + 227q - 156q2 - 224q3 + 126q4 + 199q5 - 88q6 - 169q7 + 56q8 + 132q9 - 31q10 - 95q11 + 14q12 + 64q13 - 6q14 - 38q15 + q16 + 22q17 - q18 - 11q19 + q20 + 4q21 + q22 - 3q23 + q24 |
4 | q-50 - 3q-49 + 5q-47 + 5q-45 - 19q-44 - 7q-43 + 20q-42 + 12q-41 + 35q-40 - 62q-39 - 52q-38 + 26q-37 + 46q-36 + 142q-35 - 100q-34 - 156q-33 - 49q-32 + 55q-31 + 367q-30 - 44q-29 - 267q-28 - 252q-27 - 63q-26 + 642q-25 + 163q-24 - 260q-23 - 528q-22 - 363q-21 + 840q-20 + 467q-19 - 83q-18 - 761q-17 - 768q-16 + 890q-15 + 752q-14 + 205q-13 - 884q-12 - 1153q-11 + 819q-10 + 944q-9 + 499q-8 - 895q-7 - 1425q-6 + 669q-5 + 1017q-4 + 734q-3 - 800q-2 - 1532q-1 + 457 + 944q + 870q2 - 585q3 - 1432q4 + 201q5 + 714q6 + 866q7 - 297q8 - 1129q9 - 3q10 + 392q11 + 694q12 - 48q13 - 714q14 - 81q15 + 115q16 + 429q17 + 66q18 - 353q19 - 53q20 - 17q21 + 197q22 + 63q23 - 139q24 - 8q25 - 33q26 + 68q27 + 27q28 - 47q29 + 8q30 - 15q31 + 18q32 + 7q33 - 14q34 + 4q35 - 3q36 + 4q37 + q38 - 3q39 + q40 |
5 | - q-75 + 3q-74 - 5q-72 + 2q-69 + 12q-68 + 7q-67 - 20q-66 - 21q-65 - 9q-64 + 12q-63 + 51q-62 + 48q-61 - 19q-60 - 94q-59 - 95q-58 - 12q-57 + 125q-56 + 203q-55 + 93q-54 - 153q-53 - 334q-52 - 243q-51 + 108q-50 + 470q-49 + 500q-48 + 40q-47 - 584q-46 - 818q-45 - 330q-44 + 583q-43 + 1171q-42 + 789q-41 - 432q-40 - 1486q-39 - 1370q-38 + 64q-37 + 1703q-36 + 2018q-35 + 502q-34 - 1725q-33 - 2685q-32 - 1246q-31 + 1578q-30 + 3261q-29 + 2075q-28 - 1198q-27 - 3728q-26 - 2966q-25 + 713q-24 + 4034q-23 + 3789q-22 - 92q-21 - 4205q-20 - 4563q-19 - 519q-18 + 4245q-17 + 5184q-16 + 1173q-15 - 4206q-14 - 5728q-13 - 1711q-12 + 4060q-11 + 6096q-10 + 2288q-9 - 3884q-8 - 6399q-7 - 2702q-6 + 3588q-5 + 6486q-4 + 3191q-3 - 3235q-2 - 6523q-1 - 3480 + 2743q + 6272q2 + 3834q3 - 2174q4 - 5930q5 - 3963q6 + 1523q7 + 5300q8 + 4026q9 - 846q10 - 4563q11 - 3853q12 + 210q13 + 3676q14 + 3524q15 + 305q16 - 2764q17 - 3026q18 - 659q19 + 1903q20 + 2440q21 + 823q22 - 1180q23 - 1825q24 - 825q25 + 638q26 + 1255q27 + 720q28 - 278q29 - 808q30 - 543q31 + 84q32 + 459q33 + 376q34 + 15q35 - 254q36 - 231q37 - 30q38 + 121q39 + 123q40 + 32q41 - 51q42 - 68q43 - 19q44 + 30q45 + 25q46 + 2q47 - 2q48 - 13q49 - 8q50 + 13q51 + 3q52 - 6q53 + q54 - 3q56 + 4q57 + q58 - 3q59 + q60 |
6 | q-105 - 3q-104 + 5q-102 - 7q-99 + 5q-98 - 12q-97 - 7q-96 + 29q-95 + 12q-94 + 9q-93 - 29q-92 - q-91 - 58q-90 - 44q-89 + 79q-88 + 80q-87 + 89q-86 - 37q-85 - 227q-83 - 238q-82 + 65q-81 + 208q-80 + 380q-79 + 167q-78 + 203q-77 - 496q-76 - 797q-75 - 392q-74 + 80q-73 + 799q-72 + 870q-71 + 1202q-70 - 326q-69 - 1520q-68 - 1693q-67 - 1130q-66 + 487q-65 + 1696q-64 + 3455q-63 + 1418q-62 - 1163q-61 - 3236q-60 - 3888q-59 - 2007q-58 + 1013q-57 + 6032q-56 + 5182q-55 + 1982q-54 - 2991q-53 - 6939q-52 - 7051q-51 - 3018q-50 + 6546q-49 + 9410q-48 + 8115q-47 + 946q-46 - 7710q-45 - 12819q-44 - 10332q-43 + 3148q-42 + 11451q-41 + 15172q-40 + 8272q-39 - 4583q-38 - 16662q-37 - 18663q-36 - 3615q-35 + 9923q-34 + 20570q-33 + 16648q-32 + 1624q-31 - 17374q-30 - 25504q-29 - 11405q-28 + 5727q-27 + 23215q-26 + 23742q-25 + 8657q-24 - 15749q-23 - 29822q-22 - 18128q-21 + 801q-20 + 23696q-19 + 28621q-18 + 14740q-17 - 13222q-16 - 31967q-15 - 23043q-14 - 3607q-13 + 22950q-12 + 31516q-11 + 19418q-10 - 10430q-9 - 32451q-8 - 26411q-7 - 7491q-6 + 21116q-5 + 32709q-4 + 23051q-3 - 6955q-2 - 31040q-1 - 28381 - 11382q + 17494q2 + 31734q3 + 25655q4 - 2200q5 - 26869q6 - 28245q7 - 15114q8 + 11576q9 + 27600q10 + 26221q11 + 3325q12 - 19617q13 - 24815q14 - 17280q15 + 4318q16 + 20147q17 + 23398q18 + 7676q19 - 10774q20 - 18033q21 - 16228q22 - 1796q23 + 11236q24 + 17250q25 + 8867q26 - 3275q27 - 9990q28 - 11996q29 - 4578q30 + 3935q31 + 10003q32 + 6888q33 + 708q34 - 3643q35 - 6737q36 - 4115q37 + 103q38 + 4381q39 + 3757q40 + 1474q41 - 428q42 - 2782q43 - 2346q44 - 839q45 + 1430q46 + 1420q47 + 873q48 + 414q49 - 826q50 - 932q51 - 586q52 + 381q53 + 350q54 + 284q55 + 330q56 - 176q57 - 269q58 - 242q59 + 114q60 + 43q61 + 38q62 + 139q63 - 29q64 - 57q65 - 73q66 + 48q67 - 5q68 - 12q69 + 40q70 - 7q71 - 7q72 - 18q73 + 20q74 - 2q75 - 10q76 + 9q77 - 3q78 - 3q80 + 4q81 + q82 - 3q83 + q84 |
7 | - q-140 + 3q-139 - 5q-137 + 7q-134 - 5q-132 + 12q-131 - 2q-130 - 20q-129 - 12q-128 - 9q-127 + 29q-126 + 29q-125 - 3q-124 + 43q-123 - 5q-122 - 65q-121 - 75q-120 - 97q-119 + 43q-118 + 117q-117 + 93q-116 + 196q-115 + 78q-114 - 120q-113 - 246q-112 - 468q-111 - 213q-110 + 120q-109 + 306q-108 + 754q-107 + 640q-106 + 231q-105 - 306q-104 - 1265q-103 - 1330q-102 - 810q-101 - 61q-100 + 1532q-99 + 2246q-98 + 2100q-97 + 1172q-96 - 1477q-95 - 3265q-94 - 3898q-93 - 3173q-92 + 353q-91 + 3688q-90 + 6056q-89 + 6480q-88 + 2343q-87 - 2965q-86 - 7935q-85 - 10683q-84 - 6901q-83 + 7q-82 + 8382q-81 + 15164q-80 + 13504q-79 + 5811q-78 - 6407q-77 - 18685q-76 - 21232q-75 - 14663q-74 + 628q-73 + 19680q-72 + 29011q-71 + 26200q-70 + 9320q-69 - 16789q-68 - 34988q-67 - 39145q-66 - 23359q-65 + 8960q-64 + 37531q-63 + 51752q-62 + 40538q-61 + 4051q-60 - 35356q-59 - 62302q-58 - 59219q-57 - 21387q-56 + 27826q-55 + 69026q-54 + 77551q-53 + 42006q-52 - 15247q-51 - 71343q-50 - 93870q-49 - 63810q-48 - 1236q-47 + 68749q-46 + 106842q-45 + 85363q-44 + 20326q-43 - 62182q-42 - 116130q-41 - 104949q-40 - 40112q-39 + 52501q-38 + 121506q-37 + 121883q-36 + 59434q-35 - 41201q-34 - 123865q-33 - 135600q-32 - 76916q-31 + 29301q-30 + 123742q-29 + 146427q-28 + 92245q-27 - 18015q-26 - 122222q-25 - 154443q-24 - 105075q-23 + 7502q-22 + 119763q-21 + 160641q-20 + 115820q-19 + 1602q-18 - 116950q-17 - 164926q-16 - 124683q-15 - 10181q-14 + 113539q-13 + 168325q-12 + 132477q-11 + 17979q-10 - 109677q-9 - 170054q-8 - 139098q-7 - 26401q-6 + 104201q-5 + 170719q-4 + 145379q-3 + 35059q-2 - 97203q-1 - 168875 - 150246q - 45095q2 + 87139q3 + 164612q4 + 154039q5 + 55602q6 - 74618q7 - 156376q8 - 154976q9 - 66536q10 + 58779q11 + 144158q12 + 152853q13 + 76399q14 - 41030q15 - 127548q16 - 146119q17 - 84114q18 + 22113q19 + 107278q20 + 134783q21 + 88237q22 - 4031q23 - 84539q24 - 118947q25 - 87846q26 - 11558q27 + 61251q28 + 99660q29 + 82637q30 + 23183q31 - 39407q32 - 78632q33 - 73286q34 - 29940q35 + 20902q36 + 57869q37 + 60924q38 + 31862q39 - 6809q40 - 39195q41 - 47360q42 - 29861q43 - 2397q44 + 24009q45 + 34266q46 + 25168q47 + 7179q48 - 12804q49 - 22895q50 - 19328q51 - 8715q52 + 5467q53 + 14172q54 + 13612q55 + 7965q56 - 1353q57 - 7897q58 - 8732q59 - 6374q60 - 629q61 + 4045q62 + 5209q63 + 4477q64 + 1140q65 - 1804q66 - 2758q67 - 2892q68 - 1120q69 + 671q70 + 1377q71 + 1766q72 + 792q73 - 243q74 - 585q75 - 943q76 - 497q77 + q78 + 197q79 + 560q80 + 301q81 - 27q82 - 75q83 - 239q84 - 116q85 - 30q86 - 35q87 + 152q88 + 92q89 - 17q90 - 4q91 - 52q92 - 2q93 - 2q94 - 39q95 + 34q96 + 23q97 - 8q98 - q99 - 12q100 + 10q101 + 5q102 - 15q103 + 5q104 + 5q105 - 3q106 - 3q108 + 4q109 + q110 - 3q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 27]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12], > X[13, 17, 14, 16], X[7, 14, 8, 15], X[15, 6, 16, 7], X[17, 9, 18, 8], > X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[9, 27]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3] |
In[4]:= | DTCode[Knot[9, 27]] |
Out[4]= | DTCode[4, 10, 12, 14, 2, 18, 16, 6, 8] |
In[5]:= | br = BR[Knot[9, 27]] |
Out[5]= | BR[4, {-1, -1, 2, -1, 2, 2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 27]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 27]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 27]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 27]][t] |
Out[10]= | -3 5 11 2 3 15 - t + -- - -- - 11 t + 5 t - t 2 t t |
In[11]:= | Conway[Knot[9, 27]][z] |
Out[11]= | 4 6 1 - z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 27], Knot[11, NonAlternating, 4], Knot[11, NonAlternating, 21], > Knot[11, NonAlternating, 172]} |
In[13]:= | {KnotDet[Knot[9, 27]], KnotSignature[Knot[9, 27]]} |
Out[13]= | {49, 0} |
In[14]:= | Jones[Knot[9, 27]][q] |
Out[14]= | -5 3 5 7 8 2 3 4 9 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 27], Knot[11, NonAlternating, 83]} |
In[16]:= | A2Invariant[Knot[9, 27]][q] |
Out[16]= | -16 -12 -10 2 2 2 4 8 10 12 -1 - q + q - q + -- + -- + 2 q - 2 q + q - q + q 8 2 q q |
In[17]:= | HOMFLYPT[Knot[9, 27]][a, z] |
Out[17]= | 2 4 -2 2 4 2 2 z 2 2 4 2 4 z 2 4 6 -2 + a + 3 a - a - 6 z + ---- + 5 a z - a z - 4 z + -- + 2 a z - z 2 2 a a |
In[18]:= | Kauffman[Knot[9, 27]][a, z] |
Out[18]= | 2 2 -2 2 4 z 2 z 3 5 2 z 3 z -2 - a - 3 a - a + -- + --- + 2 a z + 2 a z + a z + 12 z - -- + ---- + 3 a 4 2 a a a 3 3 4 4 2 2 4 2 4 z 4 z 3 3 5 3 4 z 5 z > 12 a z + 4 a z - ---- - ---- - 2 a z - 2 a z - 16 z + -- - ---- - 3 a 4 2 a a a 5 6 2 4 4 4 3 z 5 3 5 5 5 6 4 z > 17 a z - 7 a z + ---- - 8 a z - 4 a z + a z + 7 z + ---- + 3 2 a a 7 2 6 4 6 3 z 7 3 7 8 2 8 > 6 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z a |
In[19]:= | {Vassiliev[2][Knot[9, 27]], Vassiliev[3][Knot[9, 27]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[9, 27]][q, t] |
Out[20]= | 5 1 2 1 3 2 4 3 4 4 - + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 9 4 > 3 q t + 4 q t + 2 q t + 3 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[9, 27], 2][q] |
Out[21]= | -15 3 10 12 7 30 21 24 54 23 44 70 18 70 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - -- - 14 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 56 2 3 4 5 6 7 8 9 10 > -- - 9 q - 52 q + 50 q - q - 34 q + 25 q + 2 q - 14 q + 8 q + q - q 11 12 > 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 927 |
|