© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 925Visit 925's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 925's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,12,6,13 X9,17,10,16 X13,18,14,1 X17,14,18,15 X15,11,16,10 X11,6,12,7 X7283 |
Gauss Code: | {-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 16 6 18 10 14 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 3t-2 + 12t-1 - 17 + 12t - 3t2 |
Conway Polynomial: | 1 - 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n134, ...} |
Determinant and Signature: | {47, -2} |
Jones Polynomial: | - q-8 + 3q-7 - 5q-6 + 7q-5 - 8q-4 + 8q-3 - 7q-2 + 5q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n25, ...} |
A2 (sl(3)) Invariant: | - q-26 - q-24 + 2q-22 + q-18 + 2q-16 - 2q-14 - 2q-10 + q-6 - q-4 + 3q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 + a2 - a2z4 - 3a4 - 4a4z2 - 2a4z4 + 3a6 + 3a6z2 - a8 |
Kauffman Polynomial: | 1 - 2z2 + z4 - 2az3 + 2az5 - a2 + 2a2z2 - 3a2z4 + 3a2z6 - a3z + 3a3z3 - 3a3z5 + 3a3z7 - 3a4 + 13a4z2 - 15a4z4 + 6a4z6 + a4z8 - a5z + 5a5z3 - 10a5z5 + 6a5z7 - 3a6 + 13a6z2 - 18a6z4 + 6a6z6 + a6z8 + a7z - 2a7z3 - 4a7z5 + 3a7z7 - a8 + 4a8z2 - 7a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 925. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 3q-22 + 10q-20 - 12q-19 - 7q-18 + 30q-17 - 20q-16 - 25q-15 + 52q-14 - 19q-13 - 45q-12 + 65q-11 - 12q-10 - 56q-9 + 62q-8 - 3q-7 - 50q-6 + 43q-5 + 4q-4 - 31q-3 + 19q-2 + 4q-1 - 11 + 5q + q2 - 2q3 + q4 |
3 | - q-45 + 3q-44 - 5q-42 - 5q-41 + 12q-40 + 14q-39 - 20q-38 - 29q-37 + 23q-36 + 55q-35 - 20q-34 - 87q-33 + 6q-32 + 120q-31 + 20q-30 - 148q-29 - 60q-28 + 173q-27 + 101q-26 - 184q-25 - 145q-24 + 188q-23 + 185q-22 - 184q-21 - 218q-20 + 173q-19 + 240q-18 - 155q-17 - 251q-16 + 130q-15 + 248q-14 - 98q-13 - 234q-12 + 67q-11 + 204q-10 - 34q-9 - 167q-8 + 11q-7 + 121q-6 + 10q-5 - 87q-4 - 8q-3 + 46q-2 + 14q-1 - 28 - 5q + 11q2 + 4q3 - 7q4 + q5 + q6 + q7 - 2q8 + q9 |
4 | q-74 - 3q-73 + 5q-71 + 5q-69 - 19q-68 - 7q-67 + 20q-66 + 12q-65 + 35q-64 - 61q-63 - 53q-62 + 23q-61 + 46q-60 + 146q-59 - 90q-58 - 158q-57 - 67q-56 + 40q-55 + 373q-54 + 2q-53 - 243q-52 - 293q-51 - 134q-50 + 615q-49 + 266q-48 - 155q-47 - 559q-46 - 516q-45 + 712q-44 + 597q-43 + 140q-42 - 715q-41 - 977q-40 + 617q-39 + 850q-38 + 526q-37 - 725q-36 - 1361q-35 + 421q-34 + 974q-33 + 861q-32 - 637q-31 - 1587q-30 + 198q-29 + 974q-28 + 1088q-27 - 477q-26 - 1631q-25 - 32q-24 + 837q-23 + 1174q-22 - 235q-21 - 1456q-20 - 244q-19 + 553q-18 + 1077q-17 + 38q-16 - 1067q-15 - 347q-14 + 204q-13 + 784q-12 + 216q-11 - 588q-10 - 287q-9 - 43q-8 + 416q-7 + 215q-6 - 223q-5 - 133q-4 - 104q-3 + 145q-2 + 113q-1 - 57 - 23q - 59q2 + 33q3 + 33q4 - 17q5 + 8q6 - 17q7 + 6q8 + 6q9 - 7q10 + 5q11 - 3q12 + q13 + q14 - 2q15 + q16 |
5 | - q-110 + 3q-109 - 5q-107 + 2q-104 + 12q-103 + 7q-102 - 20q-101 - 21q-100 - 9q-99 + 12q-98 + 50q-97 + 49q-96 - 16q-95 - 94q-94 - 98q-93 - 19q-92 + 119q-91 + 209q-90 + 115q-89 - 134q-88 - 340q-87 - 283q-86 + 53q-85 + 457q-84 + 564q-83 + 157q-82 - 515q-81 - 895q-80 - 532q-79 + 402q-78 + 1215q-77 + 1094q-76 - 79q-75 - 1427q-74 - 1754q-73 - 512q-72 + 1442q-71 + 2422q-70 + 1331q-69 - 1176q-68 - 3008q-67 - 2310q-66 + 662q-65 + 3398q-64 + 3314q-63 + 116q-62 - 3580q-61 - 4285q-60 - 1002q-59 + 3543q-58 + 5103q-57 + 1944q-56 - 3320q-55 - 5780q-54 - 2837q-53 + 3003q-52 + 6267q-51 + 3640q-50 - 2625q-49 - 6602q-48 - 4328q-47 + 2224q-46 + 6809q-45 + 4896q-44 - 1814q-43 - 6884q-42 - 5355q-41 + 1369q-40 + 6824q-39 + 5728q-38 - 884q-37 - 6615q-36 - 5975q-35 + 325q-34 + 6206q-33 + 6106q-32 + 289q-31 - 5602q-30 - 6046q-29 - 920q-28 + 4773q-27 + 5784q-26 + 1500q-25 - 3790q-24 - 5262q-23 - 1967q-22 + 2724q-21 + 4540q-20 + 2213q-19 - 1711q-18 - 3608q-17 - 2245q-16 + 801q-15 + 2710q-14 + 2009q-13 - 188q-12 - 1763q-11 - 1645q-10 - 245q-9 + 1083q-8 + 1199q-7 + 347q-6 - 504q-5 - 782q-4 - 379q-3 + 221q-2 + 448q-1 + 261 - 33q - 226q2 - 182q3 + 3q4 + 91q5 + 81q6 + 34q7 - 39q8 - 48q9 - 3q10 + 9q11 + 4q12 + 18q13 - 3q14 - 12q15 + 4q16 + q17 - 5q18 + 5q19 + q20 - 3q21 + q22 + q23 - 2q24 + q25 |
6 | q-153 - 3q-152 + 5q-150 - 7q-147 + 5q-146 - 12q-145 - 7q-144 + 29q-143 + 12q-142 + 9q-141 - 29q-140 - q-139 - 57q-138 - 45q-137 + 76q-136 + 80q-135 + 92q-134 - 31q-133 + 3q-132 - 225q-131 - 248q-130 + 39q-129 + 194q-128 + 391q-127 + 207q-126 + 252q-125 - 452q-124 - 820q-123 - 510q-122 - 54q-121 + 732q-120 + 950q-119 + 1418q-118 - 17q-117 - 1366q-116 - 1905q-115 - 1619q-114 - 58q-113 + 1480q-112 + 3804q-111 + 2389q-110 - 165q-109 - 2986q-108 - 4667q-107 - 3620q-106 - 498q-105 + 5644q-104 + 6712q-103 + 4656q-102 - 880q-101 - 6822q-100 - 9567q-99 - 6897q-98 + 3585q-97 + 10001q-96 + 12251q-95 + 6245q-94 - 4504q-93 - 14471q-92 - 16341q-91 - 3934q-90 + 8669q-89 + 18845q-88 + 16539q-87 + 3352q-86 - 14902q-85 - 24835q-84 - 14620q-83 + 2141q-82 + 21279q-81 + 25993q-80 + 14058q-79 - 10684q-78 - 29514q-77 - 24549q-76 - 6779q-75 + 19627q-74 + 32060q-73 + 23891q-72 - 4448q-71 - 30505q-70 - 31473q-69 - 14860q-68 + 16129q-67 + 34848q-66 + 30969q-65 + 1281q-64 - 29521q-63 - 35488q-62 - 20802q-61 + 12527q-60 + 35603q-59 + 35503q-58 + 5901q-57 - 27577q-56 - 37536q-55 - 25138q-54 + 8783q-53 + 34815q-52 + 38309q-51 + 10297q-50 - 24145q-49 - 37739q-48 - 28659q-47 + 3769q-46 + 31596q-45 + 39209q-44 + 15180q-43 - 17980q-42 - 34893q-41 - 30850q-40 - 2982q-39 + 24647q-38 + 36660q-37 + 19526q-36 - 8996q-35 - 27651q-34 - 29726q-33 - 9763q-32 + 14325q-31 + 29289q-30 + 20740q-29 + 302q-28 - 16818q-27 - 23788q-26 - 13313q-25 + 3858q-24 + 18345q-23 + 17110q-22 + 6068q-21 - 6166q-20 - 14534q-19 - 11812q-18 - 2671q-17 + 7942q-16 + 10268q-15 + 6591q-14 + 341q-13 - 6048q-12 - 7111q-11 - 3997q-10 + 1692q-9 + 4080q-8 + 3948q-7 + 2022q-6 - 1280q-5 - 2814q-4 - 2463q-3 - 286q-2 + 843q-1 + 1406 + 1296q + 129q2 - 671q3 - 904q4 - 281q5 - 36q6 + 248q7 + 468q8 + 166q9 - 82q10 - 220q11 - 52q12 - 69q13 - 15q14 + 119q15 + 51q16 - 4q17 - 46q18 + 13q19 - 19q20 - 24q21 + 28q22 + 9q23 + q24 - 13q25 + 9q26 - q27 - 10q28 + 7q29 + q30 + q31 - 3q32 + q33 + q34 - 2q35 + q36 |
7 | - q-203 + 3q-202 - 5q-200 + 7q-197 - 5q-195 + 12q-194 - 2q-193 - 20q-192 - 12q-191 - 9q-190 + 29q-189 + 29q-188 - 3q-187 + 42q-186 - 4q-185 - 62q-184 - 75q-183 - 100q-182 + 37q-181 + 115q-180 + 94q-179 + 198q-178 + 92q-177 - 99q-176 - 237q-175 - 484q-174 - 258q-173 + 71q-172 + 279q-171 + 757q-170 + 717q-169 + 368q-168 - 177q-167 - 1226q-166 - 1465q-165 - 1079q-164 - 374q-163 + 1311q-162 + 2323q-161 + 2551q-160 + 1866q-159 - 820q-158 - 3090q-157 - 4446q-156 - 4371q-155 - 1113q-154 + 2770q-153 + 6327q-152 + 8191q-151 + 5046q-150 - 564q-149 - 7209q-148 - 12491q-147 - 11038q-146 - 4743q-145 + 5406q-144 + 16002q-143 + 18824q-142 + 13644q-141 + 373q-140 - 16839q-139 - 26572q-138 - 25676q-137 - 11470q-136 + 12759q-135 + 32200q-134 + 39557q-133 + 27660q-132 - 2300q-131 - 33026q-130 - 52635q-129 - 47756q-128 - 15169q-127 + 26964q-126 + 62059q-125 + 69413q-124 + 38731q-123 - 12985q-122 - 65447q-121 - 89559q-120 - 66080q-119 - 8534q-118 + 61050q-117 + 105401q-116 + 94658q-115 + 35809q-114 - 49018q-113 - 115123q-112 - 121194q-111 - 66111q-110 + 30299q-109 + 117833q-108 + 143639q-107 + 96865q-106 - 7281q-105 - 114329q-104 - 160638q-103 - 125246q-102 - 17597q-101 + 105726q-100 + 172010q-99 + 149911q-98 + 42096q-97 - 94293q-96 - 178470q-95 - 169860q-94 - 64344q-93 + 81626q-92 + 181081q-91 + 185321q-90 + 83491q-89 - 69252q-88 - 181260q-87 - 196848q-86 - 99274q-85 + 58062q-84 + 180019q-83 + 205276q-82 + 112108q-81 - 48156q-80 - 178042q-79 - 211642q-78 - 122795q-77 + 39315q-76 + 175603q-75 + 216507q-74 + 132140q-73 - 30665q-72 - 172291q-71 - 220251q-70 - 141101q-69 + 21258q-68 + 167515q-67 + 222740q-66 + 150009q-65 - 10179q-64 - 160099q-63 - 223169q-62 - 159021q-61 - 3390q-60 + 149010q-59 + 220610q-58 + 167410q-57 + 19431q-56 - 133252q-55 - 213557q-54 - 173938q-53 - 37527q-52 + 112483q-51 + 200831q-50 + 176989q-49 + 56185q-48 - 87249q-47 - 181702q-46 - 174769q-45 - 73228q-44 + 58993q-43 + 156317q-42 + 165930q-41 + 86429q-40 - 30131q-39 - 126202q-38 - 150173q-37 - 93581q-36 + 3851q-35 + 93677q-34 + 128109q-33 + 93437q-32 + 17521q-31 - 61840q-30 - 102321q-29 - 86279q-28 - 31469q-27 + 34149q-26 + 74995q-25 + 73166q-24 + 38102q-23 - 12323q-22 - 49960q-21 - 57242q-20 - 37526q-19 - 1848q-18 + 28983q-17 + 40381q-16 + 32412q-15 + 9592q-14 - 13868q-13 - 25884q-12 - 24697q-11 - 11540q-10 + 4244q-9 + 14375q-8 + 16861q-7 + 10484q-6 + 623q-5 - 6877q-4 - 10214q-3 - 7721q-2 - 2370q-1 + 2388 + 5548q + 5012q2 + 2316q3 - 380q4 - 2573q5 - 2768q6 - 1739q7 - 402q8 + 1109q9 + 1430q10 + 954q11 + 414q12 - 327q13 - 567q14 - 540q15 - 377q16 + 144q17 + 277q18 + 191q19 + 152q20 - 9q21 - 36q22 - 96q23 - 143q24 + 23q25 + 58q26 + 17q27 + 23q28 - 8q29 + 20q30 - 4q31 - 47q32 + 8q33 + 15q34 + 2q35 + 2q36 - 9q37 + 8q38 + 4q39 - 12q40 + 2q41 + 3q42 + q43 + q44 - 3q45 + q46 + q47 - 2q48 + q49 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 25]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16], > X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10], X[11, 6, 12, 7], > X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[9, 25]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5] |
In[4]:= | DTCode[Knot[9, 25]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 6, 18, 10, 14] |
In[5]:= | br = BR[Knot[9, 25]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[9, 25]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 25]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 25]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, {4, 7}, 1} |
In[10]:= | alex = Alexander[Knot[9, 25]][t] |
Out[10]= | 3 12 2 -17 - -- + -- + 12 t - 3 t 2 t t |
In[11]:= | Conway[Knot[9, 25]][z] |
Out[11]= | 4 1 - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 25], Knot[11, NonAlternating, 134]} |
In[13]:= | {KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]} |
Out[13]= | {47, -2} |
In[14]:= | Jones[Knot[9, 25]][q] |
Out[14]= | -8 3 5 7 8 8 7 5 -2 - q + -- - -- + -- - -- + -- - -- + - + q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 25], Knot[11, NonAlternating, 25]} |
In[16]:= | A2Invariant[Knot[9, 25]][q] |
Out[16]= | -26 -24 2 -18 2 2 2 -6 -4 3 4 -q - q + --- + q + --- - --- - --- + q - q + -- + q 22 16 14 10 2 q q q q q |
In[17]:= | HOMFLYPT[Knot[9, 25]][a, z] |
Out[17]= | 2 4 6 8 2 4 2 6 2 2 4 4 4 1 + a - 3 a + 3 a - a + z - 4 a z + 3 a z - a z - 2 a z |
In[18]:= | Kauffman[Knot[9, 25]][a, z] |
Out[18]= | 2 4 6 8 3 5 7 9 2 2 2 1 - a - 3 a - 3 a - a - a z - a z + a z + a z - 2 z + 2 a z + 4 2 6 2 8 2 3 3 3 5 3 7 3 > 13 a z + 13 a z + 4 a z - 2 a z + 3 a z + 5 a z - 2 a z - 9 3 4 2 4 4 4 6 4 8 4 5 3 5 > 2 a z + z - 3 a z - 15 a z - 18 a z - 7 a z + 2 a z - 3 a z - 5 5 7 5 9 5 2 6 4 6 6 6 8 6 > 10 a z - 4 a z + a z + 3 a z + 6 a z + 6 a z + 3 a z + 3 7 5 7 7 7 4 8 6 8 > 3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[9, 25]][q, t] |
Out[20]= | 2 4 1 2 1 3 2 4 3 4 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 4 4 4 3 4 t 3 2 > ----- + ----- + ----- + ---- + ---- + - + q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 25], 2][q] |
Out[21]= | -23 3 10 12 7 30 20 25 52 19 45 65 -11 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 22 20 19 18 17 16 15 14 13 12 11 q q q q q q q q q q q 12 56 62 3 50 43 4 31 19 4 2 3 4 > --- - -- + -- - -- - -- + -- + -- - -- + -- + - + 5 q + q - 2 q + q 10 9 8 7 6 5 4 3 2 q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 925 |
|