© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
9.23
923
9.25
925
    9.24
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 924   

Visit 924's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 924's page at Knotilus!

Acknowledgement

9.24
KnotPlot

PD Presentation: X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283

Gauss Code: {-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 16 18 6 12 10

Minimum Braid Representative:


Length is 9, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 1 3 3 / 4--6 1

Alexander Polynomial: - t-3 + 5t-2 - 10t-1 + 13 - 10t + 5t2 - t3

Conway Polynomial: 1 + z2 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {818, K11n85, K11n164, ...}

Determinant and Signature: {45, 0}

Jones Polynomial: - q-5 + 2q-4 - 4q-3 + 7q-2 - 7q-1 + 8 - 7q + 5q2 - 3q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-16 - q-14 - q-10 + 3q-8 + 2q-6 + q-4 + 2q-2 - 2 + q2 - 2q4 + q8 - q10 + q12

HOMFLY-PT Polynomial: a-2 + 2a-2z2 + a-2z4 - 3 - 6z2 - 4z4 - z6 + 5a2 + 6a2z2 + 2a2z4 - 2a4 - a4z2

Kauffman Polynomial: - a-4z2 + a-4z4 + a-3z - 4a-3z3 + 3a-3z5 - a-2 + 2a-2z2 - 5a-2z4 + 4a-2z6 + 2a-1z - 3a-1z3 - a-1z5 + 3a-1z7 - 3 + 9z2 - 11z4 + 5z6 + z8 + 2az + az3 - 7az5 + 5az7 - 5a2 + 10a2z2 - 10a2z4 + 3a2z6 + a2z8 + 3a3z - 3a3z3 - 2a3z5 + 2a3z7 - 2a4 + 4a4z2 - 5a4z4 + 2a4z6 + 2a5z - 3a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 924. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9         1
j = 7        2 
j = 5       31 
j = 3      42  
j = 1     43   
j = -1    45    
j = -3   33     
j = -5  14      
j = -7 13       
j = -9 1        
j = -111         

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 2q-14 + 6q-12 - 9q-11 - 3q-10 + 21q-9 - 19q-8 - 14q-7 + 44q-6 - 25q-5 - 31q-4 + 61q-3 - 23q-2 - 43q-1 + 64 - 16q - 43q2 + 49q3 - 6q4 - 31q5 + 26q6 + q7 - 14q8 + 8q9 + q10 - 3q11 + q12
3 - q-30 + 2q-29 - 2q-27 - 3q-26 + 8q-25 + 4q-24 - 12q-23 - 13q-22 + 22q-21 + 24q-20 - 28q-19 - 48q-18 + 35q-17 + 75q-16 - 32q-15 - 108q-14 + 17q-13 + 149q-12 - 4q-11 - 173q-10 - 31q-9 + 207q-8 + 52q-7 - 216q-6 - 89q-5 + 235q-4 + 104q-3 - 225q-2 - 130q-1 + 221 + 137q - 196q2 - 145q3 + 168q4 + 141q5 - 132q6 - 128q7 + 92q8 + 112q9 - 60q10 - 87q11 + 32q12 + 62q13 - 14q14 - 39q15 + 4q16 + 23q17 - 2q18 - 11q19 + q20 + 4q21 + q22 - 3q23 + q24
4 q-50 - 2q-49 + 2q-47 - q-46 + 4q-45 - 10q-44 + 12q-42 - q-41 + 12q-40 - 36q-39 - 11q-38 + 36q-37 + 17q-36 + 45q-35 - 94q-34 - 66q-33 + 50q-32 + 71q-31 + 160q-30 - 154q-29 - 194q-28 - 21q-27 + 117q-26 + 400q-25 - 120q-24 - 342q-23 - 232q-22 + 50q-21 + 706q-20 + 62q-19 - 403q-18 - 519q-17 - 166q-16 + 948q-15 + 330q-14 - 329q-13 - 773q-12 - 451q-11 + 1068q-10 + 574q-9 - 182q-8 - 928q-7 - 696q-6 + 1069q-5 + 732q-4 - 17q-3 - 967q-2 - 858q-1 + 961 + 786q + 148q2 - 875q3 - 920q4 + 731q5 + 719q6 + 299q7 - 649q8 - 855q9 + 425q10 + 523q11 + 376q12 - 345q13 - 652q14 + 154q15 + 264q16 + 328q17 - 97q18 - 380q19 + 20q20 + 64q21 + 191q22 + 13q23 - 159q24 - q25 - 12q26 + 73q27 + 19q28 - 51q29 + 7q30 - 12q31 + 19q32 + 6q33 - 14q34 + 4q35 - 3q36 + 4q37 + q38 - 3q39 + q40
5 - q-75 + 2q-74 - 2q-72 + q-71 - 2q-69 + 6q-68 + q-67 - 11q-66 - 2q-65 + 5q-64 + 4q-63 + 18q-62 + 4q-61 - 33q-60 - 31q-59 + q-58 + 34q-57 + 70q-56 + 39q-55 - 69q-54 - 126q-53 - 85q-52 + 54q-51 + 209q-50 + 208q-49 - 24q-48 - 287q-47 - 368q-46 - 123q-45 + 342q-44 + 601q-43 + 342q-42 - 290q-41 - 823q-40 - 714q-39 + 102q-38 + 1018q-37 + 1159q-36 + 249q-35 - 1071q-34 - 1639q-33 - 795q-32 + 960q-31 + 2125q-30 + 1424q-29 - 683q-28 - 2427q-27 - 2169q-26 + 194q-25 + 2698q-24 + 2853q-23 + 332q-22 - 2696q-21 - 3503q-20 - 1010q-19 + 2714q-18 + 4008q-17 + 1565q-16 - 2494q-15 - 4438q-14 - 2168q-13 + 2366q-12 + 4709q-11 + 2595q-10 - 2065q-9 - 4920q-8 - 3041q-7 + 1886q-6 + 4988q-5 + 3323q-4 - 1545q-3 - 4996q-2 - 3622q-1 + 1275 + 4865q + 3781q2 - 860q3 - 4619q4 - 3921q5 + 454q6 + 4223q7 + 3915q8 + 18q9 - 3678q10 - 3792q11 - 483q12 + 3018q13 + 3522q14 + 863q15 - 2271q16 - 3086q17 - 1151q18 + 1527q19 + 2551q20 + 1265q21 - 870q22 - 1931q23 - 1232q24 + 354q25 + 1340q26 + 1053q27 - 7q28 - 831q29 - 809q30 - 158q31 + 449q32 + 538q33 + 208q34 - 196q35 - 333q36 - 168q37 + 69q38 + 172q39 + 107q40 - 7q41 - 79q42 - 66q43 - q44 + 39q45 + 24q46 - 2q47 - 6q48 - 14q49 - 5q50 + 14q51 + 2q52 - 6q53 + q54 - 3q56 + 4q57 + q58 - 3q59 + q60
6 q-105 - 2q-104 + 2q-102 - q-101 - 2q-99 + 6q-98 - 7q-97 - 2q-96 + 13q-95 - 2q-94 - 4q-93 - 15q-92 + 14q-91 - 15q-90 - 4q-89 + 48q-88 + 11q-87 - 11q-86 - 62q-85 + 5q-84 - 54q-83 - 10q-82 + 145q-81 + 98q-80 + 34q-79 - 154q-78 - 78q-77 - 238q-76 - 124q-75 + 295q-74 + 378q-73 + 337q-72 - 111q-71 - 188q-70 - 757q-69 - 683q-68 + 157q-67 + 750q-66 + 1151q-65 + 595q-64 + 255q-63 - 1390q-62 - 1998q-61 - 1054q-60 + 348q-59 + 2036q-58 + 2309q-57 + 2304q-56 - 896q-55 - 3349q-54 - 3676q-53 - 2113q-52 + 1342q-51 + 4001q-50 + 6189q-49 + 2197q-48 - 2739q-47 - 6341q-46 - 6675q-45 - 2472q-44 + 3436q-43 + 10190q-42 + 7705q-41 + 1289q-40 - 6693q-39 - 11356q-38 - 8900q-37 - 611q-36 + 11899q-35 + 13444q-34 + 7912q-33 - 3759q-32 - 13882q-31 - 15602q-30 - 6988q-29 + 10578q-28 + 17254q-27 + 14726q-26 + 1184q-25 - 13752q-24 - 20537q-23 - 13340q-22 + 7474q-21 + 18710q-20 + 19884q-19 + 6069q-18 - 12085q-17 - 23290q-16 - 18113q-15 + 4229q-14 + 18658q-13 + 23057q-12 + 9789q-11 - 10067q-10 - 24457q-9 - 21188q-8 + 1461q-7 + 17851q-6 + 24741q-5 + 12518q-4 - 7896q-3 - 24468q-2 - 23090q-1 - 1272 + 16161q + 25188q2 + 14828q3 - 4949q4 - 22954q5 - 23940q6 - 4544q7 + 12843q8 + 23858q9 + 16666q10 - 756q11 - 19097q12 - 22977q13 - 8007q14 + 7571q15 + 19867q16 + 16960q17 + 3969q18 - 12791q19 - 19221q20 - 10137q21 + 1504q22 + 13314q23 + 14508q24 + 7256q25 - 5661q26 - 12930q27 - 9446q28 - 2964q29 + 6158q30 + 9593q31 + 7486q32 - 381q33 - 6260q34 - 6238q35 - 4217q36 + 1092q37 + 4384q38 + 5148q39 + 1621q40 - 1728q41 - 2645q42 - 2971q43 - 834q44 + 1063q45 + 2386q46 + 1292q47 + 26q48 - 510q49 - 1276q50 - 761q51 - 88q52 + 747q53 + 480q54 + 196q55 + 118q56 - 343q57 - 293q58 - 163q59 + 181q60 + 83q61 + 45q62 + 110q63 - 60q64 - 65q65 - 59q66 + 54q67 - 2q68 - 9q69 + 36q70 - 11q71 - 8q72 - 15q73 + 21q74 - 3q75 - 10q76 + 9q77 - 3q78 - 3q80 + 4q81 + q82 - 3q83 + q84
7 - q-140 + 2q-139 - 2q-137 + q-136 + 2q-134 - 2q-133 - 5q-132 + 8q-131 - 9q-129 + 2q-128 + 2q-127 + 14q-126 + q-125 - 21q-124 + 13q-123 - 5q-122 - 27q-121 - q-120 + 4q-119 + 60q-118 + 38q-117 - 38q-116 + 3q-115 - 48q-114 - 97q-113 - 40q-112 - 16q-111 + 172q-110 + 208q-109 + 50q-108 + 44q-107 - 172q-106 - 346q-105 - 296q-104 - 237q-103 + 267q-102 + 625q-101 + 559q-100 + 543q-99 - 83q-98 - 782q-97 - 1099q-96 - 1288q-95 - 342q-94 + 851q-93 + 1615q-92 + 2297q-91 + 1431q-90 - 293q-89 - 1983q-88 - 3682q-87 - 3181q-86 - 1117q-85 + 1542q-84 + 4915q-83 + 5689q-82 + 3845q-81 + 153q-80 - 5364q-79 - 8324q-78 - 7862q-77 - 3942q-76 + 4065q-75 + 10460q-74 + 12797q-73 + 9806q-72 - 194q-71 - 10597q-70 - 17580q-69 - 17714q-68 - 6956q-67 + 7799q-66 + 21009q-65 + 26466q-64 + 17056q-63 - 1049q-62 - 21292q-61 - 34702q-60 - 29576q-59 - 9884q-58 + 17656q-57 + 40895q-56 + 42753q-55 + 24128q-54 - 9314q-53 - 43277q-52 - 55196q-51 - 40863q-50 - 3220q-49 + 41743q-48 + 65265q-47 + 57750q-46 + 18850q-45 - 35554q-44 - 71793q-43 - 74054q-42 - 36303q-41 + 26325q-40 + 74888q-39 + 87585q-38 + 53509q-37 - 14326q-36 - 74307q-35 - 98629q-34 - 69811q-33 + 1936q-32 + 71494q-31 + 106145q-30 + 83603q-29 + 10615q-28 - 66761q-27 - 111441q-26 - 95151q-25 - 21528q-24 + 61680q-23 + 114155q-22 + 103934q-21 + 31289q-20 - 56394q-19 - 115841q-18 - 110840q-17 - 38925q-16 + 51725q-15 + 116152q-14 + 115863q-13 + 45652q-12 - 47264q-11 - 116286q-10 - 119959q-9 - 51048q-8 + 43195q-7 + 115435q-6 + 123025q-5 + 56492q-4 - 38579q-3 - 114184q-2 - 125691q-1 - 61653 + 33314q + 111375q2 + 127324q3 + 67443q4 - 26389q5 - 106970q6 - 127958q7 - 73296q8 + 17883q9 + 99926q10 + 126507q11 + 79102q12 - 7438q13 - 89954q14 - 122499q15 - 83961q16 - 4269q17 + 76927q18 + 115077q19 + 86756q20 + 16431q21 - 61115q22 - 103909q23 - 86691q24 - 27768q25 + 43774q26 + 89294q27 + 82781q28 + 36687q29 - 26135q30 - 71983q31 - 75024q32 - 42189q33 + 10102q34 + 53648q35 + 63855q36 + 43450q37 + 2765q38 - 35873q39 - 50508q40 - 40702q41 - 11524q42 + 20480q43 + 36681q44 + 34749q45 + 15902q46 - 8676q47 - 23947q48 - 26995q49 - 16442q50 + 831q51 + 13506q52 + 19031q53 + 14408q54 + 3303q55 - 6169q56 - 11983q57 - 10927q58 - 4636q59 + 1553q60 + 6604q61 + 7457q62 + 4273q63 + 618q64 - 3118q65 - 4428q66 - 3110q67 - 1362q68 + 1079q69 + 2345q70 + 1989q71 + 1281q72 - 203q73 - 1120q74 - 1031q75 - 875q76 - 137q77 + 407q78 + 477q79 + 590q80 + 155q81 - 188q82 - 181q83 - 259q84 - 91q85 + 16q86 + 24q87 + 168q88 + 72q89 - 40q90 - 14q91 - 48q92 - 2q94 - 32q95 + 37q96 + 19q97 - 12q98 - 2q99 - 9q100 + 11q101 + 4q102 - 15q103 + 5q104 + 5q105 - 3q106 - 3q108 + 4q109 + q110 - 3q111 + q112


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[9, 24]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16], 
 
>   X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12], X[13, 6, 14, 7], 
 
>   X[7, 2, 8, 3]]
In[3]:=
GaussCode[Knot[9, 24]]
Out[3]=   
GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]
In[4]:=
DTCode[Knot[9, 24]]
Out[4]=   
DTCode[4, 8, 14, 2, 16, 18, 6, 12, 10]
In[5]:=
br = BR[Knot[9, 24]]
Out[5]=   
BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 9}
In[7]:=
BraidIndex[Knot[9, 24]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[9, 24]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[9, 24]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 1, 3, 3, {4, 6}, 1}
In[10]:=
alex = Alexander[Knot[9, 24]][t]
Out[10]=   
      -3   5    10             2    3
13 - t   + -- - -- - 10 t + 5 t  - t
            2   t
           t
In[11]:=
Conway[Knot[9, 24]][z]
Out[11]=   
     2    4    6
1 + z  - z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
 
>   Knot[11, NonAlternating, 164]}
In[13]:=
{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}
Out[13]=   
{45, 0}
In[14]:=
Jones[Knot[9, 24]][q]
Out[14]=   
     -5   2    4    7    7            2      3    4
8 - q   + -- - -- + -- - - - 7 q + 5 q  - 3 q  + q
           4    3    2   q
          q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[9, 24]}
In[16]:=
A2Invariant[Knot[9, 24]][q]
Out[16]=   
      -16    -14    -10   3    2     -4   2     2      4    8    10    12
-2 - q    - q    - q    + -- + -- + q   + -- + q  - 2 q  + q  - q   + q
                           8    6          2
                          q    q          q
In[17]:=
HOMFLYPT[Knot[9, 24]][a, z]
Out[17]=   
                                   2                             4
      -2      2      4      2   2 z       2  2    4  2      4   z       2  4
-3 + a   + 5 a  - 2 a  - 6 z  + ---- + 6 a  z  - a  z  - 4 z  + -- + 2 a  z  - 
                                  2                              2
                                 a                              a
 
     6
>   z
In[18]:=
Kauffman[Knot[9, 24]][a, z]
Out[18]=   
                                                                      2
      -2      2      4   z    2 z              3        5        2   z
-3 - a   - 5 a  - 2 a  + -- + --- + 2 a z + 3 a  z + 2 a  z + 9 z  - -- + 
                          3    a                                      4
                         a                                           a
 
       2                           3      3
    2 z        2  2      4  2   4 z    3 z       3      3  3      5  3
>   ---- + 10 a  z  + 4 a  z  - ---- - ---- + a z  - 3 a  z  - 3 a  z  - 
      2                           3     a
     a                           a
 
             4      4                           5    5
        4   z    5 z        2  4      4  4   3 z    z         5      3  5
>   11 z  + -- - ---- - 10 a  z  - 5 a  z  + ---- - -- - 7 a z  - 2 a  z  + 
             4     2                           3    a
            a     a                           a
 
                      6                          7
     5  5      6   4 z       2  6      4  6   3 z         7      3  7    8
>   a  z  + 5 z  + ---- + 3 a  z  + 2 a  z  + ---- + 5 a z  + 2 a  z  + z  + 
                     2                         a
                    a
 
     2  8
>   a  z
In[19]:=
{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}
Out[19]=   
{1, -2}
In[20]:=
Kh[Knot[9, 24]][q, t]
Out[20]=   
5           1        1       1       3       1       4       3      3      4
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2    5  3      7  3    9  4
>   3 q t + 4 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + q  t
In[21]:=
ColouredJones[Knot[9, 24], 2][q]
Out[21]=   
      -15    2     6     9     3    21   19   14   44   25   31   61   23
64 + q    - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - -- - 
             14    12    11    10    9    8    7    6    5    4    3    2
            q     q     q     q     q    q    q    q    q    q    q    q
 
    43              2       3      4       5       6    7       8      9
>   -- - 16 q - 43 q  + 49 q  - 6 q  - 31 q  + 26 q  + q  - 14 q  + 8 q  + 
    q
 
     10      11    12
>   q   - 3 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 924
9.23
923
9.25
925