© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 924Visit 924's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 924's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283 |
Gauss Code: | {-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 16 18 6 12 10 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 5t-2 - 10t-1 + 13 - 10t + 5t2 - t3 |
Conway Polynomial: | 1 + z2 - z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {818, K11n85, K11n164, ...} |
Determinant and Signature: | {45, 0} |
Jones Polynomial: | - q-5 + 2q-4 - 4q-3 + 7q-2 - 7q-1 + 8 - 7q + 5q2 - 3q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 - q-14 - q-10 + 3q-8 + 2q-6 + q-4 + 2q-2 - 2 + q2 - 2q4 + q8 - q10 + q12 |
HOMFLY-PT Polynomial: | a-2 + 2a-2z2 + a-2z4 - 3 - 6z2 - 4z4 - z6 + 5a2 + 6a2z2 + 2a2z4 - 2a4 - a4z2 |
Kauffman Polynomial: | - a-4z2 + a-4z4 + a-3z - 4a-3z3 + 3a-3z5 - a-2 + 2a-2z2 - 5a-2z4 + 4a-2z6 + 2a-1z - 3a-1z3 - a-1z5 + 3a-1z7 - 3 + 9z2 - 11z4 + 5z6 + z8 + 2az + az3 - 7az5 + 5az7 - 5a2 + 10a2z2 - 10a2z4 + 3a2z6 + a2z8 + 3a3z - 3a3z3 - 2a3z5 + 2a3z7 - 2a4 + 4a4z2 - 5a4z4 + 2a4z6 + 2a5z - 3a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 924. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 2q-14 + 6q-12 - 9q-11 - 3q-10 + 21q-9 - 19q-8 - 14q-7 + 44q-6 - 25q-5 - 31q-4 + 61q-3 - 23q-2 - 43q-1 + 64 - 16q - 43q2 + 49q3 - 6q4 - 31q5 + 26q6 + q7 - 14q8 + 8q9 + q10 - 3q11 + q12 |
3 | - q-30 + 2q-29 - 2q-27 - 3q-26 + 8q-25 + 4q-24 - 12q-23 - 13q-22 + 22q-21 + 24q-20 - 28q-19 - 48q-18 + 35q-17 + 75q-16 - 32q-15 - 108q-14 + 17q-13 + 149q-12 - 4q-11 - 173q-10 - 31q-9 + 207q-8 + 52q-7 - 216q-6 - 89q-5 + 235q-4 + 104q-3 - 225q-2 - 130q-1 + 221 + 137q - 196q2 - 145q3 + 168q4 + 141q5 - 132q6 - 128q7 + 92q8 + 112q9 - 60q10 - 87q11 + 32q12 + 62q13 - 14q14 - 39q15 + 4q16 + 23q17 - 2q18 - 11q19 + q20 + 4q21 + q22 - 3q23 + q24 |
4 | q-50 - 2q-49 + 2q-47 - q-46 + 4q-45 - 10q-44 + 12q-42 - q-41 + 12q-40 - 36q-39 - 11q-38 + 36q-37 + 17q-36 + 45q-35 - 94q-34 - 66q-33 + 50q-32 + 71q-31 + 160q-30 - 154q-29 - 194q-28 - 21q-27 + 117q-26 + 400q-25 - 120q-24 - 342q-23 - 232q-22 + 50q-21 + 706q-20 + 62q-19 - 403q-18 - 519q-17 - 166q-16 + 948q-15 + 330q-14 - 329q-13 - 773q-12 - 451q-11 + 1068q-10 + 574q-9 - 182q-8 - 928q-7 - 696q-6 + 1069q-5 + 732q-4 - 17q-3 - 967q-2 - 858q-1 + 961 + 786q + 148q2 - 875q3 - 920q4 + 731q5 + 719q6 + 299q7 - 649q8 - 855q9 + 425q10 + 523q11 + 376q12 - 345q13 - 652q14 + 154q15 + 264q16 + 328q17 - 97q18 - 380q19 + 20q20 + 64q21 + 191q22 + 13q23 - 159q24 - q25 - 12q26 + 73q27 + 19q28 - 51q29 + 7q30 - 12q31 + 19q32 + 6q33 - 14q34 + 4q35 - 3q36 + 4q37 + q38 - 3q39 + q40 |
5 | - q-75 + 2q-74 - 2q-72 + q-71 - 2q-69 + 6q-68 + q-67 - 11q-66 - 2q-65 + 5q-64 + 4q-63 + 18q-62 + 4q-61 - 33q-60 - 31q-59 + q-58 + 34q-57 + 70q-56 + 39q-55 - 69q-54 - 126q-53 - 85q-52 + 54q-51 + 209q-50 + 208q-49 - 24q-48 - 287q-47 - 368q-46 - 123q-45 + 342q-44 + 601q-43 + 342q-42 - 290q-41 - 823q-40 - 714q-39 + 102q-38 + 1018q-37 + 1159q-36 + 249q-35 - 1071q-34 - 1639q-33 - 795q-32 + 960q-31 + 2125q-30 + 1424q-29 - 683q-28 - 2427q-27 - 2169q-26 + 194q-25 + 2698q-24 + 2853q-23 + 332q-22 - 2696q-21 - 3503q-20 - 1010q-19 + 2714q-18 + 4008q-17 + 1565q-16 - 2494q-15 - 4438q-14 - 2168q-13 + 2366q-12 + 4709q-11 + 2595q-10 - 2065q-9 - 4920q-8 - 3041q-7 + 1886q-6 + 4988q-5 + 3323q-4 - 1545q-3 - 4996q-2 - 3622q-1 + 1275 + 4865q + 3781q2 - 860q3 - 4619q4 - 3921q5 + 454q6 + 4223q7 + 3915q8 + 18q9 - 3678q10 - 3792q11 - 483q12 + 3018q13 + 3522q14 + 863q15 - 2271q16 - 3086q17 - 1151q18 + 1527q19 + 2551q20 + 1265q21 - 870q22 - 1931q23 - 1232q24 + 354q25 + 1340q26 + 1053q27 - 7q28 - 831q29 - 809q30 - 158q31 + 449q32 + 538q33 + 208q34 - 196q35 - 333q36 - 168q37 + 69q38 + 172q39 + 107q40 - 7q41 - 79q42 - 66q43 - q44 + 39q45 + 24q46 - 2q47 - 6q48 - 14q49 - 5q50 + 14q51 + 2q52 - 6q53 + q54 - 3q56 + 4q57 + q58 - 3q59 + q60 |
6 | q-105 - 2q-104 + 2q-102 - q-101 - 2q-99 + 6q-98 - 7q-97 - 2q-96 + 13q-95 - 2q-94 - 4q-93 - 15q-92 + 14q-91 - 15q-90 - 4q-89 + 48q-88 + 11q-87 - 11q-86 - 62q-85 + 5q-84 - 54q-83 - 10q-82 + 145q-81 + 98q-80 + 34q-79 - 154q-78 - 78q-77 - 238q-76 - 124q-75 + 295q-74 + 378q-73 + 337q-72 - 111q-71 - 188q-70 - 757q-69 - 683q-68 + 157q-67 + 750q-66 + 1151q-65 + 595q-64 + 255q-63 - 1390q-62 - 1998q-61 - 1054q-60 + 348q-59 + 2036q-58 + 2309q-57 + 2304q-56 - 896q-55 - 3349q-54 - 3676q-53 - 2113q-52 + 1342q-51 + 4001q-50 + 6189q-49 + 2197q-48 - 2739q-47 - 6341q-46 - 6675q-45 - 2472q-44 + 3436q-43 + 10190q-42 + 7705q-41 + 1289q-40 - 6693q-39 - 11356q-38 - 8900q-37 - 611q-36 + 11899q-35 + 13444q-34 + 7912q-33 - 3759q-32 - 13882q-31 - 15602q-30 - 6988q-29 + 10578q-28 + 17254q-27 + 14726q-26 + 1184q-25 - 13752q-24 - 20537q-23 - 13340q-22 + 7474q-21 + 18710q-20 + 19884q-19 + 6069q-18 - 12085q-17 - 23290q-16 - 18113q-15 + 4229q-14 + 18658q-13 + 23057q-12 + 9789q-11 - 10067q-10 - 24457q-9 - 21188q-8 + 1461q-7 + 17851q-6 + 24741q-5 + 12518q-4 - 7896q-3 - 24468q-2 - 23090q-1 - 1272 + 16161q + 25188q2 + 14828q3 - 4949q4 - 22954q5 - 23940q6 - 4544q7 + 12843q8 + 23858q9 + 16666q10 - 756q11 - 19097q12 - 22977q13 - 8007q14 + 7571q15 + 19867q16 + 16960q17 + 3969q18 - 12791q19 - 19221q20 - 10137q21 + 1504q22 + 13314q23 + 14508q24 + 7256q25 - 5661q26 - 12930q27 - 9446q28 - 2964q29 + 6158q30 + 9593q31 + 7486q32 - 381q33 - 6260q34 - 6238q35 - 4217q36 + 1092q37 + 4384q38 + 5148q39 + 1621q40 - 1728q41 - 2645q42 - 2971q43 - 834q44 + 1063q45 + 2386q46 + 1292q47 + 26q48 - 510q49 - 1276q50 - 761q51 - 88q52 + 747q53 + 480q54 + 196q55 + 118q56 - 343q57 - 293q58 - 163q59 + 181q60 + 83q61 + 45q62 + 110q63 - 60q64 - 65q65 - 59q66 + 54q67 - 2q68 - 9q69 + 36q70 - 11q71 - 8q72 - 15q73 + 21q74 - 3q75 - 10q76 + 9q77 - 3q78 - 3q80 + 4q81 + q82 - 3q83 + q84 |
7 | - q-140 + 2q-139 - 2q-137 + q-136 + 2q-134 - 2q-133 - 5q-132 + 8q-131 - 9q-129 + 2q-128 + 2q-127 + 14q-126 + q-125 - 21q-124 + 13q-123 - 5q-122 - 27q-121 - q-120 + 4q-119 + 60q-118 + 38q-117 - 38q-116 + 3q-115 - 48q-114 - 97q-113 - 40q-112 - 16q-111 + 172q-110 + 208q-109 + 50q-108 + 44q-107 - 172q-106 - 346q-105 - 296q-104 - 237q-103 + 267q-102 + 625q-101 + 559q-100 + 543q-99 - 83q-98 - 782q-97 - 1099q-96 - 1288q-95 - 342q-94 + 851q-93 + 1615q-92 + 2297q-91 + 1431q-90 - 293q-89 - 1983q-88 - 3682q-87 - 3181q-86 - 1117q-85 + 1542q-84 + 4915q-83 + 5689q-82 + 3845q-81 + 153q-80 - 5364q-79 - 8324q-78 - 7862q-77 - 3942q-76 + 4065q-75 + 10460q-74 + 12797q-73 + 9806q-72 - 194q-71 - 10597q-70 - 17580q-69 - 17714q-68 - 6956q-67 + 7799q-66 + 21009q-65 + 26466q-64 + 17056q-63 - 1049q-62 - 21292q-61 - 34702q-60 - 29576q-59 - 9884q-58 + 17656q-57 + 40895q-56 + 42753q-55 + 24128q-54 - 9314q-53 - 43277q-52 - 55196q-51 - 40863q-50 - 3220q-49 + 41743q-48 + 65265q-47 + 57750q-46 + 18850q-45 - 35554q-44 - 71793q-43 - 74054q-42 - 36303q-41 + 26325q-40 + 74888q-39 + 87585q-38 + 53509q-37 - 14326q-36 - 74307q-35 - 98629q-34 - 69811q-33 + 1936q-32 + 71494q-31 + 106145q-30 + 83603q-29 + 10615q-28 - 66761q-27 - 111441q-26 - 95151q-25 - 21528q-24 + 61680q-23 + 114155q-22 + 103934q-21 + 31289q-20 - 56394q-19 - 115841q-18 - 110840q-17 - 38925q-16 + 51725q-15 + 116152q-14 + 115863q-13 + 45652q-12 - 47264q-11 - 116286q-10 - 119959q-9 - 51048q-8 + 43195q-7 + 115435q-6 + 123025q-5 + 56492q-4 - 38579q-3 - 114184q-2 - 125691q-1 - 61653 + 33314q + 111375q2 + 127324q3 + 67443q4 - 26389q5 - 106970q6 - 127958q7 - 73296q8 + 17883q9 + 99926q10 + 126507q11 + 79102q12 - 7438q13 - 89954q14 - 122499q15 - 83961q16 - 4269q17 + 76927q18 + 115077q19 + 86756q20 + 16431q21 - 61115q22 - 103909q23 - 86691q24 - 27768q25 + 43774q26 + 89294q27 + 82781q28 + 36687q29 - 26135q30 - 71983q31 - 75024q32 - 42189q33 + 10102q34 + 53648q35 + 63855q36 + 43450q37 + 2765q38 - 35873q39 - 50508q40 - 40702q41 - 11524q42 + 20480q43 + 36681q44 + 34749q45 + 15902q46 - 8676q47 - 23947q48 - 26995q49 - 16442q50 + 831q51 + 13506q52 + 19031q53 + 14408q54 + 3303q55 - 6169q56 - 11983q57 - 10927q58 - 4636q59 + 1553q60 + 6604q61 + 7457q62 + 4273q63 + 618q64 - 3118q65 - 4428q66 - 3110q67 - 1362q68 + 1079q69 + 2345q70 + 1989q71 + 1281q72 - 203q73 - 1120q74 - 1031q75 - 875q76 - 137q77 + 407q78 + 477q79 + 590q80 + 155q81 - 188q82 - 181q83 - 259q84 - 91q85 + 16q86 + 24q87 + 168q88 + 72q89 - 40q90 - 14q91 - 48q92 - 2q94 - 32q95 + 37q96 + 19q97 - 12q98 - 2q99 - 9q100 + 11q101 + 4q102 - 15q103 + 5q104 + 5q105 - 3q106 - 3q108 + 4q109 + q110 - 3q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 24]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16], > X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12], X[13, 6, 14, 7], > X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[9, 24]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5] |
In[4]:= | DTCode[Knot[9, 24]] |
Out[4]= | DTCode[4, 8, 14, 2, 16, 18, 6, 12, 10] |
In[5]:= | br = BR[Knot[9, 24]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 24]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 24]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 24]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 24]][t] |
Out[10]= | -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t |
In[11]:= | Conway[Knot[9, 24]][z] |
Out[11]= | 2 4 6 1 + z - z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], > Knot[11, NonAlternating, 164]} |
In[13]:= | {KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]} |
Out[13]= | {45, 0} |
In[14]:= | Jones[Knot[9, 24]][q] |
Out[14]= | -5 2 4 7 7 2 3 4 8 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 24]} |
In[16]:= | A2Invariant[Knot[9, 24]][q] |
Out[16]= | -16 -14 -10 3 2 -4 2 2 4 8 10 12 -2 - q - q - q + -- + -- + q + -- + q - 2 q + q - q + q 8 6 2 q q q |
In[17]:= | HOMFLYPT[Knot[9, 24]][a, z] |
Out[17]= | 2 4 -2 2 4 2 2 z 2 2 4 2 4 z 2 4 -3 + a + 5 a - 2 a - 6 z + ---- + 6 a z - a z - 4 z + -- + 2 a z - 2 2 a a 6 > z |
In[18]:= | Kauffman[Knot[9, 24]][a, z] |
Out[18]= | 2 -2 2 4 z 2 z 3 5 2 z -3 - a - 5 a - 2 a + -- + --- + 2 a z + 3 a z + 2 a z + 9 z - -- + 3 a 4 a a 2 3 3 2 z 2 2 4 2 4 z 3 z 3 3 3 5 3 > ---- + 10 a z + 4 a z - ---- - ---- + a z - 3 a z - 3 a z - 2 3 a a a 4 4 5 5 4 z 5 z 2 4 4 4 3 z z 5 3 5 > 11 z + -- - ---- - 10 a z - 5 a z + ---- - -- - 7 a z - 2 a z + 4 2 3 a a a a 6 7 5 5 6 4 z 2 6 4 6 3 z 7 3 7 8 > a z + 5 z + ---- + 3 a z + 2 a z + ---- + 5 a z + 2 a z + z + 2 a a 2 8 > a z |
In[19]:= | {Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[9, 24]][q, t] |
Out[20]= | 5 1 1 1 3 1 4 3 3 4 - + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 9 4 > 3 q t + 4 q t + 2 q t + 3 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[9, 24], 2][q] |
Out[21]= | -15 2 6 9 3 21 19 14 44 25 31 61 23 64 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - -- - 14 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 43 2 3 4 5 6 7 8 9 > -- - 16 q - 43 q + 49 q - 6 q - 31 q + 26 q + q - 14 q + 8 q + q 10 11 12 > q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 924 |
|