© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 923Visit 923's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 923's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X5,12,6,13 X7,16,8,17 X13,18,14,1 X17,14,18,15 X15,6,16,7 X11,8,12,9 X9,2,10,3 |
Gauss Code: | {-1, 9, -2, 1, -3, 7, -4, 8, -9, 2, -8, 3, -5, 6, -7, 4, -6, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 16 2 8 18 6 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 4t-2 - 11t-1 + 15 - 11t + 4t2 |
Conway Polynomial: | 1 + 5z2 + 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {45, -4} |
Jones Polynomial: | - q-11 + 3q-10 - 5q-9 + 6q-8 - 8q-7 + 8q-6 - 6q-5 + 5q-4 - 2q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-34 + q-32 + q-30 - 2q-28 - 2q-24 - q-22 + q-20 + 3q-16 + q-12 + 2q-10 - q-8 + q-6 |
HOMFLY-PT Polynomial: | a4 + 2a4z2 + a4z4 + 2a6 + 4a6z2 + 2a6z4 - 2a8 + a8z4 - a10z2 |
Kauffman Polynomial: | a4 - 2a4z2 + a4z4 - 2a5z3 + 2a5z5 - 2a6 + 4a6z2 - 4a6z4 + 3a6z6 + 4a7z - 6a7z3 + 2a7z5 + 2a7z7 - 2a8 + 6a8z2 - 8a8z4 + 4a8z6 + a8z8 + 4a9z - 2a9z3 - 6a9z5 + 5a9z7 + 3a10z2 - 10a10z4 + 4a10z6 + a10z8 + a11z - 5a11z5 + 3a11z7 + 3a12z2 - 7a12z4 + 3a12z6 + a13z - 2a13z3 + a13z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {5, -11} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 923. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-31 - 3q-30 + 10q-28 - 11q-27 - 8q-26 + 28q-25 - 17q-24 - 24q-23 + 47q-22 - 16q-21 - 41q-20 + 59q-19 - 11q-18 - 51q-17 + 56q-16 - 4q-15 - 45q-14 + 39q-13 + 2q-12 - 27q-11 + 19q-10 + 2q-9 - 10q-8 + 6q-7 + q-6 - 2q-5 + q-4 |
3 | - q-60 + 3q-59 - 5q-57 - 5q-56 + 11q-55 + 15q-54 - 17q-53 - 30q-52 + 17q-51 + 52q-50 - 10q-49 - 79q-48 - 4q-47 + 103q-46 + 29q-45 - 125q-44 - 57q-43 + 137q-42 + 95q-41 - 151q-40 - 122q-39 + 148q-38 + 157q-37 - 151q-36 - 177q-35 + 139q-34 + 197q-33 - 126q-32 - 205q-31 + 110q-30 + 196q-29 - 80q-28 - 188q-27 + 62q-26 + 155q-25 - 32q-24 - 132q-23 + 23q-22 + 89q-21 - 3q-20 - 69q-19 + 7q-18 + 37q-17 + 2q-16 - 26q-15 + 3q-14 + 12q-13 + q-12 - 8q-11 + 2q-10 + 2q-9 + q-8 - 2q-7 + q-6 |
4 | q-98 - 3q-97 + 5q-95 + 5q-93 - 18q-92 - 8q-91 + 17q-90 + 12q-89 + 39q-88 - 52q-87 - 54q-86 + 8q-85 + 33q-84 + 145q-83 - 58q-82 - 130q-81 - 81q-80 - 5q-79 + 322q-78 + 35q-77 - 160q-76 - 245q-75 - 174q-74 + 472q-73 + 222q-72 - 53q-71 - 399q-70 - 465q-69 + 508q-68 + 421q-67 + 176q-66 - 469q-65 - 779q-64 + 433q-63 + 559q-62 + 442q-61 - 455q-60 - 1032q-59 + 307q-58 + 622q-57 + 666q-56 - 388q-55 - 1184q-54 + 160q-53 + 613q-52 + 815q-51 - 276q-50 - 1198q-49 + 6q-48 + 508q-47 + 851q-46 - 112q-45 - 1041q-44 - 126q-43 + 308q-42 + 745q-41 + 50q-40 - 743q-39 - 167q-38 + 94q-37 + 512q-36 + 129q-35 - 415q-34 - 112q-33 - 33q-32 + 264q-31 + 108q-30 - 184q-29 - 33q-28 - 52q-27 + 103q-26 + 51q-25 - 72q-24 + 6q-23 - 27q-22 + 34q-21 + 15q-20 - 28q-19 + 10q-18 - 9q-17 + 10q-16 + 4q-15 - 9q-14 + 4q-13 - 2q-12 + 2q-11 + q-10 - 2q-9 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 23]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 16, 8, 17], > X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 6, 16, 7], X[11, 8, 12, 9], > X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[9, 23]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 7, -4, 8, -9, 2, -8, 3, -5, 6, -7, 4, -6, 5] |
In[4]:= | DTCode[Knot[9, 23]] |
Out[4]= | DTCode[4, 10, 12, 16, 2, 8, 18, 6, 14] |
In[5]:= | br = BR[Knot[9, 23]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 23]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 23]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 23]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 7}, 1} |
In[10]:= | alex = Alexander[Knot[9, 23]][t] |
Out[10]= | 4 11 2 15 + -- - -- - 11 t + 4 t 2 t t |
In[11]:= | Conway[Knot[9, 23]][z] |
Out[11]= | 2 4 1 + 5 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 23]} |
In[13]:= | {KnotDet[Knot[9, 23]], KnotSignature[Knot[9, 23]]} |
Out[13]= | {45, -4} |
In[14]:= | Jones[Knot[9, 23]][q] |
Out[14]= | -11 3 5 6 8 8 6 5 2 -2 -q + --- - -- + -- - -- + -- - -- + -- - -- + q 10 9 8 7 6 5 4 3 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 23]} |
In[16]:= | A2Invariant[Knot[9, 23]][q] |
Out[16]= | -34 -32 -30 2 2 -22 -20 3 -12 2 -8 -6 -q + q + q - --- - --- - q + q + --- + q + --- - q + q 28 24 16 10 q q q q |
In[17]:= | HOMFLYPT[Knot[9, 23]][a, z] |
Out[17]= | 4 6 8 4 2 6 2 10 2 4 4 6 4 8 4 a + 2 a - 2 a + 2 a z + 4 a z - a z + a z + 2 a z + a z |
In[18]:= | Kauffman[Knot[9, 23]][a, z] |
Out[18]= | 4 6 8 7 9 11 13 4 2 6 2 a - 2 a - 2 a + 4 a z + 4 a z + a z + a z - 2 a z + 4 a z + 8 2 10 2 12 2 5 3 7 3 9 3 13 3 > 6 a z + 3 a z + 3 a z - 2 a z - 6 a z - 2 a z - 2 a z + 4 4 6 4 8 4 10 4 12 4 5 5 7 5 > a z - 4 a z - 8 a z - 10 a z - 7 a z + 2 a z + 2 a z - 9 5 11 5 13 5 6 6 8 6 10 6 12 6 > 6 a z - 5 a z + a z + 3 a z + 4 a z + 4 a z + 3 a z + 7 7 9 7 11 7 8 8 10 8 > 2 a z + 5 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 23]], Vassiliev[3][Knot[9, 23]]} |
Out[19]= | {5, -11} |
In[20]:= | Kh[Knot[9, 23]][q, t] |
Out[20]= | -5 -3 1 2 1 3 2 3 3 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 23 9 21 8 19 8 19 7 17 7 17 6 15 6 q t q t q t q t q t q t q t 5 3 3 5 3 3 2 3 2 > ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- 15 5 13 5 13 4 11 4 11 3 9 3 9 2 7 2 5 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 23], 2][q] |
Out[21]= | -31 3 10 11 8 28 17 24 47 16 41 59 11 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 30 28 27 26 25 24 23 22 21 20 19 18 q q q q q q q q q q q q 51 56 4 45 39 2 27 19 2 10 6 -6 2 > --- + --- - --- - --- + --- + --- - --- + --- + -- - -- + -- + q - -- + 17 16 15 14 13 12 11 10 9 8 7 5 q q q q q q q q q q q q -4 > q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 923 |
|