© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
9.19
919
9.21
921
    9.20
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 920   

Visit 920's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 920's page at Knotilus!

Acknowledgement

9.20
KnotPlot

PD Presentation: X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X11,1,12,18 X15,6,16,7 X17,13,18,12 X13,8,14,9 X9,2,10,3

Gauss Code: {-1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 18 8 6 12

Minimum Braid Representative:


Length is 9, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 3 2 / 4--6 1

Alexander Polynomial: - t-3 + 5t-2 - 9t-1 + 11 - 9t + 5t2 - t3

Conway Polynomial: 1 + 2z2 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {10149, K11n26, ...}

Determinant and Signature: {41, -4}

Jones Polynomial: - q-9 + 3q-8 - 5q-7 + 6q-6 - 7q-5 + 7q-4 - 5q-3 + 4q-2 - 2q-1 + 1

Other knots (up to mirrors) with the same Jones Polynomial: {K11n90, ...}

A2 (sl(3)) Invariant: - q-28 + q-24 - q-22 + q-20 - q-18 + q-14 - q-12 + 2q-10 - q-8 + q-6 + q-4 + 1

HOMFLY-PT Polynomial: 2a2 + 3a2z2 + a2z4 - 2a4 - 5a4z2 - 4a4z4 - a4z6 + 2a6 + 5a6z2 + 2a6z4 - a8 - a8z2

Kauffman Polynomial: - 2a2 + 5a2z2 - 4a2z4 + a2z6 + 6a3z3 - 7a3z5 + 2a3z7 - 2a4 + 11a4z2 - 11a4z4 + a4z6 + a4z8 + 5a5z3 - 12a5z5 + 5a5z7 - 2a6 + 10a6z2 - 16a6z4 + 5a6z6 + a6z8 + 2a7z - 7a7z3 + 3a7z7 - a8 + 3a8z2 - 6a8z4 + 5a8z6 + 2a9z - 5a9z3 + 5a9z5 - a10z2 + 3a10z4 + a11z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 920. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1         1
j = -1        1 
j = -3       31 
j = -5      32  
j = -7     42   
j = -9    33    
j = -11   34     
j = -13  23      
j = -15 13       
j = -17 2        
j = -191         

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-25 - 3q-24 + 2q-23 + 6q-22 - 14q-21 + 7q-20 + 15q-19 - 30q-18 + 14q-17 + 25q-16 - 43q-15 + 14q-14 + 33q-13 - 45q-12 + 7q-11 + 35q-10 - 36q-9 + 29q-7 - 21q-6 - 5q-5 + 18q-4 - 8q-3 - 5q-2 + 7q-1 - 1 - 2q + q2
3 - q-48 + 3q-47 - 2q-46 - 3q-45 + 2q-44 + 8q-43 - 5q-42 - 15q-41 + 12q-40 + 21q-39 - 20q-38 - 31q-37 + 32q-36 + 44q-35 - 47q-34 - 57q-33 + 58q-32 + 76q-31 - 70q-30 - 90q-29 + 71q-28 + 105q-27 - 67q-26 - 115q-25 + 57q-24 + 120q-23 - 41q-22 - 123q-21 + 28q-20 + 114q-19 - 6q-18 - 113q-17 - 4q-16 + 96q-15 + 23q-14 - 87q-13 - 28q-12 + 65q-11 + 39q-10 - 50q-9 - 37q-8 + 29q-7 + 38q-6 - 17q-5 - 27q-4 + 3q-3 + 21q-2 + q-1 - 11 - 4q + 6q2 + 2q3 - q4 - 2q5 + q6
4 q-78 - 3q-77 + 2q-76 + 3q-75 - 5q-74 + 4q-73 - 10q-72 + 11q-71 + 9q-70 - 22q-69 + 14q-68 - 22q-67 + 32q-66 + 16q-65 - 65q-64 + 29q-63 - 21q-62 + 81q-61 + 13q-60 - 155q-59 + 36q-58 + 10q-57 + 175q-56 + 13q-55 - 294q-54 + 3q-53 + 52q-52 + 312q-51 + 49q-50 - 431q-49 - 74q-48 + 47q-47 + 439q-46 + 130q-45 - 494q-44 - 150q-43 - 21q-42 + 490q-41 + 214q-40 - 455q-39 - 178q-38 - 122q-37 + 454q-36 + 273q-35 - 354q-34 - 166q-33 - 212q-32 + 366q-31 + 298q-30 - 226q-29 - 134q-28 - 280q-27 + 252q-26 + 296q-25 - 90q-24 - 86q-23 - 314q-22 + 124q-21 + 252q-20 + 27q-19 - 13q-18 - 292q-17 + 6q-16 + 160q-15 + 87q-14 + 65q-13 - 204q-12 - 62q-11 + 51q-10 + 74q-9 + 101q-8 - 94q-7 - 59q-6 - 16q-5 + 24q-4 + 77q-3 - 19q-2 - 22q-1 - 25 - 7q + 33q2 + 2q3 - 9q5 - 8q6 + 7q7 + q8 + 2q9 - q10 - 2q11 + q12
5 - q-115 + 3q-114 - 2q-113 - 3q-112 + 5q-111 - q-110 - 2q-109 + 4q-108 - 5q-107 - 5q-106 + 11q-105 + 3q-104 - 9q-103 - 3q-102 - 2q-101 + 10q-100 + 16q-99 - 4q-98 - 35q-97 - 31q-96 + 29q-95 + 75q-94 + 47q-93 - 53q-92 - 144q-91 - 101q-90 + 103q-89 + 262q-88 + 169q-87 - 156q-86 - 414q-85 - 290q-84 + 197q-83 + 613q-82 + 470q-81 - 226q-80 - 832q-79 - 682q-78 + 193q-77 + 1031q-76 + 959q-75 - 113q-74 - 1212q-73 - 1211q-72 - 27q-71 + 1298q-70 + 1463q-69 + 203q-68 - 1326q-67 - 1634q-66 - 392q-65 + 1264q-64 + 1745q-63 + 556q-62 - 1149q-61 - 1762q-60 - 698q-59 + 1004q-58 + 1711q-57 + 794q-56 - 834q-55 - 1623q-54 - 847q-53 + 667q-52 + 1482q-51 + 894q-50 - 486q-49 - 1361q-48 - 908q-47 + 330q-46 + 1175q-45 + 939q-44 - 131q-43 - 1043q-42 - 935q-41 - 22q-40 + 816q-39 + 934q-38 + 234q-37 - 649q-36 - 887q-35 - 365q-34 + 387q-33 + 808q-32 + 526q-31 - 189q-30 - 676q-29 - 579q-28 - 55q-27 + 506q-26 + 614q-25 + 211q-24 - 307q-23 - 536q-22 - 359q-21 + 118q-20 + 444q-19 + 380q-18 + 55q-17 - 277q-16 - 384q-15 - 163q-14 + 148q-13 + 289q-12 + 211q-11 - 4q-10 - 206q-9 - 204q-8 - 58q-7 + 94q-6 + 158q-5 + 99q-4 - 28q-3 - 98q-2 - 85q-1 - 24 + 49q + 67q2 + 26q3 - 10q4 - 33q5 - 32q6 - 3q7 + 20q8 + 13q9 + 6q10 - 11q12 - 6q13 + 3q14 + 2q15 + q16 + 2q17 - q18 - 2q19 + q20
6 q-159 - 3q-158 + 2q-157 + 3q-156 - 5q-155 + q-154 - q-153 + 8q-152 - 10q-151 + q-150 + 16q-149 - 22q-148 + 4q-147 + 5q-146 + 19q-145 - 30q-144 - 9q-143 + 42q-142 - 45q-141 + 25q-140 + 32q-139 + 32q-138 - 108q-137 - 63q-136 + 86q-135 - 41q-134 + 139q-133 + 123q-132 + 20q-131 - 337q-130 - 275q-129 + 118q-128 + 74q-127 + 509q-126 + 421q-125 - 27q-124 - 878q-123 - 878q-122 - 12q-121 + 365q-120 + 1372q-119 + 1200q-118 + 37q-117 - 1811q-116 - 2152q-115 - 632q-114 + 655q-113 + 2797q-112 + 2741q-111 + 604q-110 - 2838q-109 - 4086q-108 - 2061q-107 + 434q-106 + 4330q-105 + 4932q-104 + 2024q-103 - 3274q-102 - 6036q-101 - 4123q-100 - 696q-99 + 5132q-98 + 6995q-97 + 4049q-96 - 2684q-95 - 7076q-94 - 5975q-93 - 2421q-92 + 4789q-91 + 8017q-90 + 5798q-89 - 1426q-88 - 6858q-87 - 6802q-86 - 3898q-85 + 3705q-84 + 7795q-83 + 6595q-82 - 262q-81 - 5846q-80 - 6563q-79 - 4613q-78 + 2552q-77 + 6838q-76 + 6536q-75 + 475q-74 - 4645q-73 - 5802q-72 - 4761q-71 + 1565q-70 + 5677q-69 + 6136q-68 + 1016q-67 - 3433q-66 - 4945q-65 - 4773q-64 + 550q-63 + 4418q-62 + 5676q-61 + 1658q-60 - 2053q-59 - 3983q-58 - 4768q-57 - 651q-56 + 2900q-55 + 5003q-54 + 2345q-53 - 431q-52 - 2685q-51 - 4466q-50 - 1848q-49 + 1083q-48 + 3815q-47 + 2661q-46 + 1158q-45 - 996q-44 - 3509q-43 - 2542q-42 - 690q-41 + 2082q-40 + 2187q-39 + 2133q-38 + 688q-37 - 1890q-36 - 2289q-35 - 1778q-34 + 289q-33 + 949q-32 + 2041q-31 + 1676q-30 - 186q-29 - 1183q-28 - 1744q-27 - 804q-26 - 397q-25 + 1062q-24 + 1568q-23 + 803q-22 + 33q-21 - 865q-20 - 838q-19 - 1053q-18 + 5q-17 + 731q-16 + 793q-15 + 593q-14 + 18q-13 - 249q-12 - 849q-11 - 430q-10 - 9q-9 + 283q-8 + 435q-7 + 320q-6 + 204q-5 - 325q-4 - 287q-3 - 217q-2 - 62q-1 + 88 + 184q + 243q2 - 22q3 - 49q4 - 109q5 - 90q6 - 57q7 + 22q8 + 109q9 + 23q10 + 27q11 - 12q12 - 24q13 - 41q14 - 17q15 + 25q16 + 3q17 + 14q18 + 5q19 + 3q20 - 11q21 - 8q22 + 5q23 - 2q24 + 2q25 + q26 + 2q27 - q28 - 2q29 + q30
7 - q-210 + 3q-209 - 2q-208 - 3q-207 + 5q-206 - q-205 + q-204 - 5q-203 - 2q-202 + 14q-201 - 12q-200 - 5q-199 + 15q-198 - 6q-197 + 3q-196 - 12q-195 - q-194 + 38q-193 - 29q-192 - 17q-191 + 17q-190 - 29q-189 + 24q-188 + 2q-187 + 22q-186 + 92q-185 - 68q-184 - 82q-183 - 56q-182 - 110q-181 + 109q-180 + 147q-179 + 170q-178 + 225q-177 - 191q-176 - 363q-175 - 407q-174 - 354q-173 + 358q-172 + 701q-171 + 775q-170 + 610q-169 - 526q-168 - 1265q-167 - 1513q-166 - 1064q-165 + 843q-164 + 2169q-163 + 2570q-162 + 1769q-161 - 1084q-160 - 3373q-159 - 4253q-158 - 3000q-157 + 1293q-156 + 5001q-155 + 6555q-154 + 4803q-153 - 1223q-152 - 6816q-151 - 9521q-150 - 7446q-149 + 584q-148 + 8685q-147 + 13142q-146 + 10941q-145 + 730q-144 - 10261q-143 - 16953q-142 - 15200q-141 - 3086q-140 + 11104q-139 + 20748q-138 + 20052q-137 + 6306q-136 - 11045q-135 - 23885q-134 - 24876q-133 - 10333q-132 + 9756q-131 + 26036q-130 + 29362q-129 + 14704q-128 - 7552q-127 - 26913q-126 - 32827q-125 - 18913q-124 + 4549q-123 + 26516q-122 + 35116q-121 + 22486q-120 - 1340q-119 - 25085q-118 - 36023q-117 - 25097q-116 - 1698q-115 + 23007q-114 + 35774q-113 + 26566q-112 + 4190q-111 - 20609q-110 - 34654q-109 - 27075q-108 - 6020q-107 + 18333q-106 + 33006q-105 + 26777q-104 + 7241q-103 - 16233q-102 - 31165q-101 - 26076q-100 - 8002q-99 + 14367q-98 + 29289q-97 + 25234q-96 + 8611q-95 - 12663q-94 - 27500q-93 - 24359q-92 - 9234q-91 + 10835q-90 + 25666q-89 + 23703q-88 + 10107q-87 - 8926q-86 - 23780q-85 - 23000q-84 - 11132q-83 + 6560q-82 + 21542q-81 + 22377q-80 + 12473q-79 - 3977q-78 - 19067q-77 - 21411q-76 - 13680q-75 + 969q-74 + 15948q-73 + 20144q-72 + 14934q-71 + 2095q-70 - 12589q-69 - 18237q-68 - 15529q-67 - 5173q-66 + 8624q-65 + 15733q-64 + 15709q-63 + 7866q-62 - 4718q-61 - 12558q-60 - 14829q-59 - 9928q-58 + 726q-57 + 8885q-56 + 13216q-55 + 11066q-54 + 2639q-53 - 4985q-52 - 10603q-51 - 11107q-50 - 5317q-49 + 1237q-48 + 7477q-47 + 10027q-46 + 6786q-45 + 1983q-44 - 4017q-43 - 8021q-42 - 7151q-41 - 4237q-40 + 877q-39 + 5374q-38 + 6267q-37 + 5395q-36 + 1750q-35 - 2643q-34 - 4701q-33 - 5354q-32 - 3270q-31 + 225q-30 + 2558q-29 + 4430q-28 + 3901q-27 + 1477q-26 - 678q-25 - 2945q-24 - 3469q-23 - 2302q-22 - 880q-21 + 1350q-20 + 2576q-19 + 2346q-18 + 1661q-17 - 67q-16 - 1400q-15 - 1795q-14 - 1855q-13 - 740q-12 + 407q-11 + 1042q-10 + 1527q-9 + 1027q-8 + 262q-7 - 343q-6 - 1003q-5 - 909q-4 - 528q-3 - 158q-2 + 471q-1 + 633 + 536q + 347q2 - 127q3 - 296q4 - 348q5 - 371q6 - 98q7 + 88q8 + 202q9 + 267q10 + 104q11 + 31q12 - 32q13 - 153q14 - 112q15 - 69q16 + 78q18 + 42q19 + 41q20 + 40q21 - 14q22 - 27q23 - 36q24 - 23q25 + 14q26 + q27 + 5q28 + 16q29 + 5q30 + 2q31 - 8q32 - 8q33 + 3q34 - 2q36 + 2q37 + q38 + 2q39 - q40 - 2q41 + q42


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[9, 20]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], 
 
>   X[11, 1, 12, 18], X[15, 6, 16, 7], X[17, 13, 18, 12], X[13, 8, 14, 9], 
 
>   X[9, 2, 10, 3]]
In[3]:=
GaussCode[Knot[9, 20]]
Out[3]=   
GaussCode[-1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5]
In[4]:=
DTCode[Knot[9, 20]]
Out[4]=   
DTCode[4, 10, 14, 16, 2, 18, 8, 6, 12]
In[5]:=
br = BR[Knot[9, 20]]
Out[5]=   
BR[4, {-1, -1, -1, 2, -1, -3, 2, -3, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 9}
In[7]:=
BraidIndex[Knot[9, 20]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[9, 20]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[9, 20]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 3, 2, {4, 6}, 1}
In[10]:=
alex = Alexander[Knot[9, 20]][t]
Out[10]=   
      -3   5    9            2    3
11 - t   + -- - - - 9 t + 5 t  - t
            2   t
           t
In[11]:=
Conway[Knot[9, 20]][z]
Out[11]=   
       2    4    6
1 + 2 z  - z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[9, 20], Knot[10, 149], Knot[11, NonAlternating, 26]}
In[13]:=
{KnotDet[Knot[9, 20]], KnotSignature[Knot[9, 20]]}
Out[13]=   
{41, -4}
In[14]:=
Jones[Knot[9, 20]][q]
Out[14]=   
     -9   3    5    6    7    7    5    4    2
1 - q   + -- - -- + -- - -- + -- - -- + -- - -
           8    7    6    5    4    3    2   q
          q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[9, 20], Knot[11, NonAlternating, 90]}
In[16]:=
A2Invariant[Knot[9, 20]][q]
Out[16]=   
     -28    -24    -22    -20    -18    -14    -12    2     -8    -6    -4
1 - q    + q    - q    + q    - q    + q    - q    + --- - q   + q   + q
                                                      10
                                                     q
In[17]:=
HOMFLYPT[Knot[9, 20]][a, z]
Out[17]=   
   2      4      6    8      2  2      4  2      6  2    8  2    2  4
2 a  - 2 a  + 2 a  - a  + 3 a  z  - 5 a  z  + 5 a  z  - a  z  + a  z  - 
 
       4  4      6  4    4  6
>   4 a  z  + 2 a  z  - a  z
In[18]:=
Kauffman[Knot[9, 20]][a, z]
Out[18]=   
    2      4      6    8      7        9        2  2       4  2       6  2
-2 a  - 2 a  - 2 a  - a  + 2 a  z + 2 a  z + 5 a  z  + 11 a  z  + 10 a  z  + 
 
       8  2    10  2      3  3      5  3      7  3      9  3    11  3
>   3 a  z  - a   z  + 6 a  z  + 5 a  z  - 7 a  z  - 5 a  z  + a   z  - 
 
       2  4       4  4       6  4      8  4      10  4      3  5       5  5
>   4 a  z  - 11 a  z  - 16 a  z  - 6 a  z  + 3 a   z  - 7 a  z  - 12 a  z  + 
 
       9  5    2  6    4  6      6  6      8  6      3  7      5  7      7  7
>   5 a  z  + a  z  + a  z  + 5 a  z  + 5 a  z  + 2 a  z  + 5 a  z  + 3 a  z  + 
 
     4  8    6  8
>   a  z  + a  z
In[19]:=
{Vassiliev[2][Knot[9, 20]], Vassiliev[3][Knot[9, 20]]}
Out[19]=   
{2, -4}
In[20]:=
Kh[Knot[9, 20]][q, t]
Out[20]=   
2    3      1        2        1        3        2        3        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        3       3       4      2      3     t    t      2
>   ------ + ----- + ----- + ----- + ---- + ---- + -- + - + q t
     11  3    9  3    9  2    7  2    7      5      3   q
    q   t    q  t    q  t    q  t    q  t   q  t   q
In[21]:=
ColouredJones[Knot[9, 20], 2][q]
Out[21]=   
      -25    3     2     6    14     7    15    30    14    25    43    14
-1 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + 
             24    23    22    21    20    19    18    17    16    15    14
            q     q     q     q     q     q     q     q     q     q     q
 
    33    45     7    35    36   29   21   5    18   8    5    7          2
>   --- - --- + --- + --- - -- + -- - -- - -- + -- - -- - -- + - - 2 q + q
     13    12    11    10    9    7    6    5    4    3    2   q
    q     q     q     q     q    q    q    q    q    q    q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 920
9.19
919
9.21
921